A microreactor with thousands of subcompartments: enzyme-loaded liposomes within polymer capsules.

Fully loaded: Noncovalent anchoring of liposomes into polymer multilayered films with cholesterol-modified polymers allows the preparation of capsosomes-liposome-compartmentalized polymer capsules (see picture). A quantitative enzymatic reaction confirmed the presence of active cargo within the capsosomes and was used to determine the number of subcompartments within this novel biomedical carrier system.

[1]  Sune M. Christensen,et al.  Surface-based lipid vesicle reactor systems: fabrication and applications. , 2007, Soft matter.

[2]  Y. Arntz,et al.  Composite multilayered biocompatible polyelectrolyte films with intact liposomes: stability and temperature triggered dye release. , 2007, Soft matter.

[3]  Lars Dähne,et al.  Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. , 2004, Angewandte Chemie.

[4]  V. Torchilin Recent advances with liposomes as pharmaceutical carriers , 2005, Nature Reviews Drug Discovery.

[5]  F. Caruso,et al.  Binding, Internalization, and Antigen Presentation of Vaccine‐Loaded Nanoengineered Capsules in Blood , 2008 .

[6]  F. Caruso,et al.  Disulfide-Stabilized Poly(methacrylic acid) Capsules: Formation, Cross-Linking, and Degradation Behavior , 2008 .

[7]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[8]  S. Nguyen,et al.  Polymer-caged lipsomes: a pH-responsive delivery system with high stability. , 2007, Journal of the American Chemical Society.

[9]  J. Ho,et al.  Dual electrochemical determination of glucose and insulin using enzyme and ferrocene microcapsules. , 2007, Biosensors & bioelectronics.

[10]  Jia-cong Shen,et al.  Spontaneous deposition of water-soluble substances into microcapsules: phenomenon, mechanism, and application. , 2002, Angewandte Chemie.

[11]  C. Chern,et al.  Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. , 2008, Angewandte Chemie.

[12]  L. Dähne,et al.  Maßgeschneiderte Polyelektrolyt‐Mikrokapseln: von Multischichten zu smarten Kapseln , 2004 .

[13]  Horst Vogel,et al.  An integrated self-assembled nanofluidic system for controlled biological chemistries. , 2008, Angewandte Chemie.

[14]  Yanjun Jiang,et al.  Protamine-Templated Biomimetic Hybrid Capsules: Efficient and Stable Carrier for Enzyme Encapsulation† , 2008 .

[15]  Gleb B. Sukhorukov,et al.  NEUARTIGE POLYMERHOHLKORPER DURCH SELBSTORGANISATION VON POLYELEKTROLYTEN AUF KOLLOIDALEN TEMPLATEN , 1998 .

[16]  F. Caruso,et al.  Degradable polyelectrolyte capsules filled with oligonucleotide sequences. , 2006, Angewandte Chemie.

[17]  Horst Vogel,et al.  Investigating cellular signaling reactions in single attoliter vesicles. , 2005, Journal of the American Chemical Society.

[18]  Z. Sideratou,et al.  Complementary liposomes based on phosphatidylcholine: interaction effectiveness vs protective coating. , 2002, Journal of colloid and interface science.

[19]  Janos Vörös,et al.  Micropatterning of DNA-tagged vesicles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[20]  Ying Zhang,et al.  Artificial cells: building bioinspired systems using small-scale biology. , 2008, Trends in biotechnology.

[21]  F. Caruso,et al.  Next generation, sequentially assembled ultrathin films: beyond electrostatics. , 2007, Chemical Society reviews.

[22]  F. Caruso,et al.  A general approach for DNA encapsulation in degradable polymer microcapsules. , 2007, ACS nano.

[23]  F. Höök,et al.  Bivalent cholesterol-based coupling of oligonucletides to lipid membrane assemblies. , 2004, Journal of the American Chemical Society.

[24]  Frank Caruso,et al.  Layer-by-layer engineered capsules and their applications , 2006 .