CYP4F2 affects phenotypic outcome in adrenoleukodystrophy by modulating the clearance of very long-chain fatty acids.

[1]  R. Wanders,et al.  Adrenoleukodystrophy – neuroendocrine pathogenesis and redefinition of natural history , 2016, Nature Reviews Endocrinology.

[2]  R. Wanders,et al.  Pathogenicity of novel ABCD1 variants: The need for biochemical testing in the era of advanced genetics. , 2016, Molecular genetics and metabolism.

[3]  R. Wanders,et al.  C26:0-Carnitine Is a New Biomarker for X-Linked Adrenoleukodystrophy in Mice and Man , 2016, PloS one.

[4]  G. Raymond,et al.  Newborn screening for X-linked adrenoleukodystrophy in New York State: diagnostic protocol, surveillance protocol and treatment guidelines. , 2015, Molecular genetics and metabolism.

[5]  M. Engelen,et al.  Frequent occurrence of cerebral demyelination in adrenomyeloneuropathy , 2014, Neurology.

[6]  H. Waterham,et al.  A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. , 2014, Biochimica et biophysica acta.

[7]  R. Wanders,et al.  X-linked adrenoleukodystrophy in women: a cross-sectional cohort study. , 2014, Brain : a journal of neurology.

[8]  P. Schestatsky,et al.  Neurological impairment among heterozygote women for X-linked Adrenoleukodystrophy: a case control study on a clinical, neurophysiological and biochemical characteristics , 2014, Orphanet Journal of Rare Diseases.

[9]  M. Abdelnoor,et al.  Adrenoleukodystrophy in Norway: high rate of de novo mutations and age-dependent penetrance. , 2013, Pediatric neurology.

[10]  B. Poll-The,et al.  X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management , 2012, Orphanet Journal of Rare Diseases.

[11]  O. Melander,et al.  Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: A sex-specific relation? , 2012, Prostaglandins & other lipid mediators.

[12]  S. Chanock,et al.  Genome-wide association study identifies three common variants associated with serologic response to vitamin E supplementation in men. , 2012, The Journal of nutrition.

[13]  A. Sabbagh,et al.  CD1 Gene Polymorphisms and Phenotypic Variability in X-Linked Adrenoleukodystrophy , 2012, PloS one.

[14]  D. Avramopoulos,et al.  SOD2 as a potential modifier of X-linked adrenoleukodystrophy clinical phenotypes , 2012, Journal of Neurology.

[15]  S. Chanock,et al.  Genome-wide association study identifies common variants associated with circulating vitamin E levels , 2011, Human molecular genetics.

[16]  S. Baldwin,et al.  Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression. , 2011, The Biochemical journal.

[17]  E. Levy,et al.  Genes Involved in the Metabolism of Poly-Unsaturated Fatty-Acids (PUFA) and Risk for Crohn's Disease in Children & Young Adults , 2010, PloS one.

[18]  D. Stec,et al.  Common variants of cytochrome P450 4F2 exhibit altered vitamin E-{omega}-hydroxylase specific activity. , 2010, The Journal of nutrition.

[19]  Mushfiquddin Khan,et al.  Very long-chain fatty acid accumulation causes lipotoxic response via 5-lipoxygenase in cerebral adrenoleukodystrophy , 2010, Journal of Lipid Research.

[20]  A. El-Kadi,et al.  Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. , 2010, Pharmacology & therapeutics.

[21]  R. Wanders,et al.  The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy , 2010, EMBO molecular medicine.

[22]  A. Moser,et al.  Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. , 2009, Molecular genetics and metabolism.

[23]  M. Rieder,et al.  CYP4F2 Is a Vitamin K1 Oxidase: An Explanation for Altered Warfarin Dose in Carriers of the V433M Variant , 2009, Molecular Pharmacology.

[24]  M. Weller,et al.  Genetic variants of methionine metabolism and X-ALD phenotype generation: results of a new study sample , 2009, Journal of Neurology.

[25]  H. Waterham,et al.  The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl–CoA esters , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  A. Moser,et al.  Is microglial apoptosis an early pathogenic change in cerebral X‐linked adrenoleukodystrophy? , 2008, Annals of neurology.

[27]  G. Dacremont,et al.  Characterization of the human ω‐oxidation pathway for ω‐hydroxy‐very‐long‐chain fatty acids , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[28]  Y. Turpaz,et al.  CYP4F2 genetic variant alters required warfarin dose. , 2008, Blood.

[29]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[30]  K. Fliessbach,et al.  The cystathionine beta‐synthase variant c.844_845ins68 protects against CNS demyelination in X‐linked adrenoleukodystrophy , 2006, Human mutation.

[31]  R. Wanders,et al.  Omega-oxidation of very long-chain fatty acids in human liver microsomes. Implications for X-linked adrenoleukodystrophy. , 2006, The Journal of biological chemistry.

[32]  K. Fliessbach,et al.  Methionine metabolism and phenotypic variability in X-linked adrenoleukodystrophy , 2006, Neurology.

[33]  S. Gabriel,et al.  Efficiency and power in genetic association studies , 2005, Nature Genetics.

[34]  A. Moser,et al.  Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy. , 2005, Human molecular genetics.

[35]  R. Wanders,et al.  Evidence for two enzymatic pathways for ω-oxidation of docosanoic acid in rat liver microsomes Published, JLR Papers in Press, February 16, 2005. DOI 10.1194/jlr.M400510-JLR200 , 2005, Journal of Lipid Research.

[36]  S. Denis,et al.  Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. , 2005, Molecular genetics and metabolism.

[37]  M. Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[38]  R. Wanders,et al.  Method for measurement of peroxisomal very-long-chain fatty acid beta-oxidation in human skin fibroblasts using stable-isotope-labeled tetracosanoic acid. , 2004, Clinical chemistry.

[39]  S. Ferdinandusse,et al.  Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. , 2004, Journal of lipid research.

[40]  Mushfiquddin Khan,et al.  Correlation of very long chain fatty acid accumulation and inflammatory disease progression in childhood X-ALD: implications for potential therapies , 2003, Neurobiology of Disease.

[41]  F. Hanefeld,et al.  Role of leukotrienes as indicators of the inflammatory demyelinating reaction in x-linked cerebral adrenoleukodystrophy , 2003, Journal of Neurology.

[42]  R. Wanders,et al.  Analysis of very long-chain fatty acids using electrospray ionization mass spectrometry. , 2003, Molecular genetics and metabolism.

[43]  M. Di Rocco,et al.  Monozygotic twins with X‐linked adrenoleukodystrophy and different phenotypes , 2001, Annals of neurology.

[44]  H. Moser,et al.  Adrenoleukodystrophy: Incidence, new mutation rate, and results of extended family screening , 2001, Annals of neurology.

[45]  H. Moser,et al.  Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls , 1999, Annals of neurology.

[46]  Mushfiquddin Khan,et al.  Cytokine‐Induced Accumulation of Very Long‐Chain Fatty Acids in Rat C6 Glial Cells: Implication for X‐Adrenoleukodystrophy , 1998, Journal of neurochemistry.

[47]  F. Hanefeld,et al.  Cerebral adrenoleukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype , 1996, Annals of neurology.

[48]  I. Faé,et al.  X-linked adrenoleukodystrophy (ALD): a novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. , 1994, Biochemical and biophysical research communications.

[49]  Jean Mosser,et al.  Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters , 1993, Nature.

[50]  T. Beaty,et al.  Predictions of a 2-locus model for disease heterogeneity: application to adrenoleukodystrophy. , 1992, American journal of medical genetics.

[51]  H. Moser,et al.  Adrenoleukodystrophy: Phenotypic variability and implications for therapy , 1992, Journal of Inherited Metabolic Disease.

[52]  H. Moser,et al.  Adrenoleukodystrophy: impaired oxidation of long chain fatty acids in cultured skin fibroblasts an adrenal cortex. , 1981, Biochemical and biophysical research communications.

[53]  A. Moser,et al.  Streamlined determination of lysophosphatidylcholines in dried blood spots for newborn screening of X-linked adrenoleukodystrophy. , 2015, Molecular genetics and metabolism.

[54]  C. Wiesinger,et al.  The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis , 2015 .

[55]  J. Pevsner,et al.  X-Linked Adrenoleukodystrophy: Genes, Mutations, and Phenotypes , 2004, Neurochemical Research.

[56]  Word Count: 4,335 Address correspondence to: , 2022 .