Oxygen redox and instability in energy ceramics

[1]  Moonsu Yoon,et al.  Stalling oxygen evolution in high-voltage cathodes by lanthurization , 2023, Nature Energy.

[2]  Kongfa Chen,et al.  A critical review of key materials and issues in solid oxide cells , 2023, Interdisciplinary Materials.

[3]  Yanhao Dong,et al.  Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. , 2022, Chemical reviews.

[4]  Ningkang Wang,et al.  Functionality of the Cathode–Electrolyte Interlayer in Protonic Solid Oxide Fuel Cells , 2022, ACS Applied Energy Materials.

[5]  I. Chen,et al.  Transverse and Longitudinal Degradations in Ceramic Solid Electrolytes , 2022, Chemistry of Materials.

[6]  Ju Li,et al.  Enhanced Mobility of Cations and Anions in the Redox State: The Polaronium Mechanism , 2022, Acta Materialia.

[7]  Wei Wu,et al.  Revitalizing interface in protonic ceramic cells by acid etch , 2022, Nature.

[8]  M. Whittingham,et al.  Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage , 2022, Nature Reviews Materials.

[9]  Y. Ye,et al.  Capturing the swelling of solid-electrolyte interphase in lithium metal batteries , 2022, Science.

[10]  A. Virkar,et al.  On the Thermodynamic Origin of the Formation of Li-Dendrites in an Electrochemical Cell , 2021, Journal of The Electrochemical Society.

[11]  Jeremiah A. Johnson,et al.  Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte , 2021, Nature Energy.

[12]  Jaephil Cho,et al.  Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries , 2021, Nature Energy.

[13]  B. Mathiesen,et al.  Recent advances in solid oxide cell technology for electrolysis , 2020, Science.

[14]  C. Yoon,et al.  Author Correction: Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge , 2020, Nature Energy.

[15]  Felix H. Richter,et al.  Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. , 2020, Chemical reviews.

[16]  S. Haile,et al.  Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography , 2020, Nature Materials.

[17]  Guoying Chen,et al.  The Role of Secondary Particle Structures in Surface Phase Transitions of Ni-Rich Cathodes , 2020 .

[18]  A. Manthiram A reflection on lithium-ion battery cathode chemistry , 2020, Nature Communications.

[19]  Yunhui Huang,et al.  Shaping the Contact between Li Metal Anode and Solid‐State Electrolytes , 2020, Advanced Functional Materials.

[20]  P. Yan,et al.  Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials , 2020, Nature Communications.

[21]  Dawei Song,et al.  LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery , 2020, Journal of Energy Chemistry.

[22]  Zongping Shao,et al.  Self-Assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode , 2019, Joule.

[23]  P. Voorhees,et al.  Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects , 2019, Energy & Environmental Science.

[24]  Sun-Ju Song,et al.  Determination of partial conductivities and computational analysis of the theoretical power density of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ(BZCYYb1711) electrolyte under various PCFC conditions , 2019, Journal of Materials Chemistry A.

[25]  A. Manthiram,et al.  Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability , 2019, Nature Communications.

[26]  Wangda Li,et al.  Ethylene Carbonate‐Free Electrolytes for High‐Nickel Layered Oxide Cathodes in Lithium‐Ion Batteries , 2019, Advanced Energy Materials.

[27]  Liquan Chen,et al.  Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V , 2019, Nature Energy.

[28]  Zonghai Chen,et al.  Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes , 2019, Nature Energy.

[29]  J. Rupp,et al.  A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films , 2019, Nature Energy.

[30]  J. Janek,et al.  Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation. , 2019, ACS applied materials & interfaces.

[31]  K. Amine,et al.  Injection of oxygen vacancies in the bulk lattice of layered cathodes , 2019, Nature Nanotechnology.

[32]  P. Bruce,et al.  What Triggers Oxygen Loss in Oxygen Redox Cathode Materials? , 2019, Chemistry of Materials.

[33]  S. Haile,et al.  Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency , 2019, Energy & Environmental Science.

[34]  I. Chen,et al.  Potential jumps at transport bottlenecks cause instability of nominally ionic solid electrolytes in electrochemical cells , 2018, 1812.05187.

[35]  K. Kang,et al.  Unveiling the Intrinsic Cycle Reversibility of a LiCoO2 Electrode at 4.8-V Cutoff Voltage through Subtractive Surface Modification for Lithium-Ion Batteries. , 2018, Nano letters.

[36]  Hyoungchul Kim,et al.  A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C , 2018, Nature Energy.

[37]  Xuanxuan Bi,et al.  Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release , 2018, Nature Energy.

[38]  I. Chen,et al.  Oxygen potential transition in mixed conducting oxide electrolyte , 2018, Acta Materialia.

[39]  Ji‐Guang Zhang,et al.  Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries , 2018, Nature Energy.

[40]  Ji‐Guang Zhang,et al.  Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode , 2018, Nature Communications.

[41]  N. Sullivan,et al.  Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells , 2018, Nature.

[42]  S. Haile,et al.  Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells , 2018 .

[43]  Jaephil Cho,et al.  Controllable Solid Electrolyte Interphase in Nickel‐Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium‐Ion Batteries , 2018, Advanced materials.

[44]  I. Chen,et al.  Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: II. Mapping electrode polarization and vacancy condensation in YSZ , 2017, 1710.01626.

[45]  A. Manthiram,et al.  Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries , 2017 .

[46]  Eric A Stach,et al.  Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes. , 2017, Nano letters.

[47]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[48]  I. Chen,et al.  Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: I. grain growth study , 2017 .

[49]  Mogens Bjerg Mogensen,et al.  Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles , 2016 .

[50]  Ali Almansoori,et al.  Readily processed protonic ceramic fuel cells with high performance at low temperatures , 2015, Science.

[51]  S. Jensen,et al.  Eliminating degradation in solid oxide electrochemical cells by reversible operation. , 2015, Nature Materials.

[52]  Kristin A. Persson,et al.  Structural and Chemical Evolution of the Layered Li‐Excess LixMnO3 as a Function of Li Content from First‐Principles Calculations , 2014 .

[53]  Jaephil Cho,et al.  Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. , 2014, Nano letters.

[54]  Xueliang Sun,et al.  Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application , 2014 .

[55]  Li Li,et al.  Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD , 2013 .

[56]  F. Tietz,et al.  Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation , 2013 .

[57]  Jianming Zheng,et al.  Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. , 2012, ACS nano.

[58]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[59]  Bilge Yildiz,et al.  Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies , 2012 .

[60]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[61]  J. Kilner,et al.  Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide , 2011 .

[62]  T. Mizoguchi,et al.  First-principles study on migration mechanism in SrTiO3 , 2011 .

[63]  A. Virkar Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells , 2010 .

[64]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[65]  T. Jacobsen,et al.  The Course of Oxygen Partial Pressure and Electric Potentials across an Oxide Electrolyte Cell , 2008 .

[66]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[67]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[68]  Jin-ho Kim,et al.  Partial electronic conductivity and electrolytic domain of La0.9Sr0.1Ga0.8Mg0.2O3−δ , 2001 .

[69]  R. N. Blumenthal,et al.  Electronic Transport in 8 Mole Percent Y[sub 2]O[sub 3]-ZrO[sub 2] , 1989 .

[70]  R. N. Blumenthal,et al.  Thermodynamic Properties of Nonstoichiometric Yttria‐Stabilized Zirconia at Low Oxygen Pressures , 1989 .

[71]  L. C. Jonghe,et al.  Failure modes of Na-beta alumina , 1981 .

[72]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[73]  Y. Aoki,et al.  Design of Anode Functional Layers for Protonic Solid Oxide Electrolysis Cells , 2022, Journal of Materials Chemistry A.

[74]  A. Virkar,et al.  Modeling of Oxygen Chemical Potential Distribution in Solid Oxide Electrolyzer Cells , 2019, Journal of The Electrochemical Society.

[75]  E. Peled,et al.  Review—SEI: Past, Present and Future , 2017 .

[76]  L. C. Jonghe,et al.  Slow degradation and electron conduction in sodium/beta-aluminas , 1981 .