Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux via Assembly of Unit-Cell Thermal Shifters

Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials.

[1]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[2]  P. Pissis,et al.  Electrical and thermal conductivity of polymers filled with metal powders , 2002 .

[3]  V. Sobolev,et al.  Theoretical and computational studies of carbon nanotube composites and suspensions : Electrical and thermal conductivity , 2005 .

[4]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[5]  Jian-Shiuh Chen,et al.  Cloak for curvilinearly anisotropic media in conduction , 2008 .

[6]  E. Bekyarova,et al.  Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites , 2008 .

[7]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[8]  D. Werner,et al.  Transformation Electromagnetics: An Overview of the Theory and Applications , 2010, IEEE Antennas and Propagation Magazine.

[9]  Jiping Huang,et al.  A bifunctional cloak using transformation media , 2010 .

[10]  G. V. Eleftheriades,et al.  Transforming Electromagnetics Using Metamaterials , 2012, IEEE Microwave Magazine.

[11]  Martin Wegener,et al.  Experiments on elastic cloaking in thin plates. , 2012, Physical review letters.

[12]  Claude Amra,et al.  Transformation thermodynamics: cloaking and concentrating heat flux. , 2012, Optics express.

[13]  Yuki Sato,et al.  DC Magnetic Cloak , 2012, Advanced materials.

[14]  Yuki Sato,et al.  Heat flux manipulation with engineered thermal materials. , 2012, Physical review letters.

[15]  Martin Maldovan,et al.  Sound and heat revolutions in phononics , 2013, Nature.

[16]  Cheng-Wei Qiu,et al.  Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization , 2013, Scientific Reports.

[17]  M. Wegener,et al.  Experiments on transformation thermodynamics: molding the flow of heat. , 2012, Physical review letters.

[18]  Tsuyoshi Nomura,et al.  Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects , 2013 .

[19]  Cheng-Wei Qiu,et al.  Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials , 2013 .

[20]  Krishna P. Vemuri,et al.  Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials , 2013 .

[21]  Wei Jiang,et al.  A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity , 2013 .

[22]  Bruce L. Davis,et al.  Nanophononic metamaterial: thermal conductivity reduction by local resonance. , 2013, Physical review letters.

[23]  Jiping Huang,et al.  Thermally hiding an object inside a cloak with feeling , 2014 .

[24]  Krishna P. Vemuri,et al.  Guiding conductive heat flux through thermal metamaterials , 2014 .

[25]  Cheng-Wei Qiu,et al.  Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials , 2014, Advanced materials.

[26]  Run Hu,et al.  Local heating realization by reverse thermal cloak , 2014, Scientific Reports.

[27]  Sailing He,et al.  Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. , 2014, Physical review letters.

[28]  Vincenzo Galdi,et al.  Independent Manipulation of Heat and Electrical Current via Bifunctional Metamaterials , 2014 .

[29]  R. Fleury,et al.  Cloaking and invisibility: A review , 2014 .

[30]  Tianzhi Yang,et al.  Experimental evidence for the bending of heat flux in a thermal metamaterial , 2014 .

[31]  Krishna P. Vemuri,et al.  Anomalous refraction of heat flux in thermal metamaterials , 2014 .

[32]  Linzhi Wu,et al.  Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields. , 2015, Advanced materials.

[33]  Baile Zhang,et al.  Design, implementation, and extension of thermal invisibility cloaks , 2015 .

[34]  Fei Chen,et al.  Experimental Realization of Extreme Heat Flux Concentration with Easy-to-Make Thermal Metamaterials , 2015, Scientific Reports.

[35]  Baowen Li,et al.  Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials , 2015, Scientific reports.

[36]  Krishna P. Vemuri,et al.  Estimating interfacial thermal conductivity in metamaterials through heat flux mapping , 2015 .

[37]  Ji Zhou,et al.  Simultaneously concentrated electric and thermal fields using fan-shaped structure. , 2015, Optics express.

[38]  Baile Zhang,et al.  Active thermal cloak , 2015 .

[39]  Krishna P. Vemuri,et al.  Layered thermal metamaterials for the directing and harvesting of conductive heat , 2015 .

[40]  L. K. Sun,et al.  Design of plate directional heat transmission structure based on layered thermal metamaterials , 2016 .