The Inverse Fast Multipole Method

This article introduces a new fast direct solver for linear systems arising out of wide range of applications, integral equations, multivariate statistics, radial basis interpolation, etc., to name a few. \emph{The highlight of this new fast direct solver is that the solver scales linearly in the number of unknowns in all dimensions.} The solver, termed as Inverse Fast Multipole Method (abbreviated as IFMM), works on the same data-structure as the Fast Multipole Method (abbreviated as FMM). More generally, the solver can be immediately extended to the class of hierarchical matrices, denoted as $\mathcal{H}^2$ matrices with strong admissibility criteria (weak low-rank structure), i.e., \emph{the interaction between neighboring cluster of particles is full-rank whereas the interaction between particles corresponding to well-separated clusters can be efficiently represented as a low-rank matrix}. The algorithm departs from existing approaches in the fact that throughout the algorithm the interaction corresponding to neighboring clusters are always treated as full-rank interactions. Our approach relies on two major ideas: (i) The $N \times N$ matrix arising out of FMM (from now on termed as FMM matrix) can be represented as an extended sparser matrix of size $M \times M$, where $M \approx 3N$. (ii) While solving the larger extended sparser matrix, \emph{the fill-in's that arise in the matrix blocks corresponding to well-separated clusters are hierarchically compressed}. The ordering of the equations and the unknowns in the extended sparser matrix is strongly related to the local and multipole coefficients in the FMM~\cite{greengard1987fast} and \emph{the order of elimination is different from the usual nested dissection approach}. Numerical benchmarks on $2$D manifold confirm the linear scaling of the algorithm.

[1]  W. Hackbusch,et al.  H 2 -matrix approximation of integral operators by interpolation , 2002 .

[2]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[3]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[4]  R. Schaback Creating Surfaces from Scattered Data Using Radial Basis Functions , 1995 .

[5]  Sergej Rjasanow,et al.  Adaptive Cross Approximation of Dense Matrices , 2000 .

[6]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[7]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[8]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[9]  W. Hackbusch,et al.  A sparse H -matrix arithmetic: general complexity estimates , 2000 .

[10]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[11]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[12]  Ramani Duraiswami,et al.  Fast Radial Basis Function Interpolation via Preconditioned Krylov Iteration , 2007, SIAM J. Sci. Comput..

[13]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[14]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[15]  Eric Darve,et al.  Large-scale stochastic linear inversion using hierarchical matrices , 2013, Computational Geosciences.

[16]  M. Vouvakis,et al.  The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems , 2005, IEEE Transactions on Electromagnetic Compatibility.

[17]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[18]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[19]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[20]  N. Nishimura Fast multipole accelerated boundary integral equation methods , 2002 .

[21]  Shivkumar Chandrasekaran,et al.  Multipole for scattering computations: spectral discretization, stabilization, fast solvers , 2004 .

[22]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[23]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[24]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[25]  Eric Darve,et al.  Fast Algorithms for Bayesian Inversion , 2013 .

[26]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[27]  Alle-Jan van der Veen,et al.  Fast Stable Solver for Sequentially Semi-separable Linear Systems of Equations , 2002, HiPC.

[28]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[29]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[30]  Per-Gunnar Martinsson,et al.  Fast direct solvers for integral equations in complex three-dimensional domains , 2009, Acta Numerica.

[31]  W. Hackbusch,et al.  On H2-Matrices , 2000 .

[32]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[33]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[34]  Eric Darve,et al.  An $$\mathcal O (N \log N)$$O(NlogN)  Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices , 2013 .

[35]  Eric Darve,et al.  A Kalman filter powered by H2 ‐matrices for quasi‐continuous data assimilation problems , 2014, ArXiv.

[36]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[37]  Stephen Billings,et al.  Interpolation of geophysical data using continuous global surfaces , 2002 .

[38]  Leslie Greengard,et al.  A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization , 2012, SIAM J. Sci. Comput..

[39]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[40]  Eric Darve,et al.  An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.

[41]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[42]  Eric Darve,et al.  The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..

[43]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[44]  W. Hackbusch,et al.  An introduction to hierarchical matrices , 2001 .

[45]  Steffen Börm -Matrix Arithmetics in Linear Complexity , 2005, Computing.

[46]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[47]  Eric Darve,et al.  A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..

[48]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[49]  Leslie Greengard,et al.  A Fast Direct Solver for High Frequency Scattering from a Large Cavity in Two Dimensions , 2014, SIAM J. Sci. Comput..

[50]  Michael O'Neil,et al.  Fast symmetric factorization of hierarchical matrices with applications , 2014, ArXiv.

[51]  Eric Darve,et al.  Application of Hierarchical Matrices to Linear Inverse Problems in Geostatistics , 2012 .

[52]  Leslie Greengard,et al.  Fast Direct Methods for Gaussian Processes and the Analysis of NASA Kepler Mission Data , 2014 .

[53]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[54]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[55]  Eric F Darve The Fast Multipole Method , 2000 .

[56]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[57]  James Bremer,et al.  An adaptive fast direct solver for boundary integral equations in two dimensions , 2009 .

[58]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[59]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[60]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[61]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[62]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[63]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[64]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .