Color responses and their adaptation in human superior colliculus and lateral geniculate nucleus

We use an fMRI adaptation paradigm to explore the selectivity of human responses in the lateral geniculate nucleus (LGN) and superior colliculus (SC) to red-green color and achromatic contrast. We measured responses to red-green (RG) and achromatic (ACH) high contrast sinewave counter-phasing rings with and without adaptation, within a block design. The signal for the RG test stimulus was reduced following both RG and ACH adaptation, whereas the signal for the ACH test was unaffected by either adaptor. These results provide compelling evidence that the human LGN and SC have significant capacity for color adaptation. Since in the LGN red-green responses are mediated by P cells, these findings are in contrast to earlier neurophysiological data from non-human primates that have shown weak or no contrast adaptation in the P pathway. Cross-adaptation of the red-green color response by achromatic contrast suggests unselective response adaptation and points to a dual role for P cells in responding to both color and achromatic contrast. We further show that subcortical adaptation is not restricted to the geniculostriate system, but is also present in the superior colliculus (SC), an oculomotor region that until recently, has been thought to be color-blind. Our data show that the human SC not only responds to red-green color contrast, but like the LGN, shows reliable but unselective adaptation.

[1]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[2]  Serge O Dumoulin,et al.  Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI , 2008, The European journal of neuroscience.

[3]  R. Walker,et al.  Functional Imaging of the Human Superior Colliculus: An Optimised Approach , 2009, NeuroImage.

[4]  J. Movshon,et al.  Pattern adaptation and cross-orientation interactions in the primary visual cortex , 1998, Neuropharmacology.

[5]  Chris Tailby,et al.  Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys , 2012, The Journal of physiology.

[6]  Laemle Lk,et al.  A Golgy study of cellular morphology in the superficial layers of superior colliculus man, Saimiri, and Macaca. , 1981 .

[7]  Mark S. Cohen,et al.  Spatiotopic Organization in Human Superior Colliculus Observed with fMRI , 2000, NeuroImage.

[8]  Hao Zhou,et al.  Layer-specific response properties of the human lateral geniculate nucleus and superior colliculus , 2015, NeuroImage.

[9]  Phillip Wolff,et al.  Causal reasoning with forces , 2015, Front. Hum. Neurosci..

[10]  Karl J. Friston,et al.  Functional Anatomy of Visual Search: Regional Segregations within the Frontal Eye Fields and Effective Connectivity of the Superior Colliculus , 2002, NeuroImage.

[11]  M. Mallar Chakravarty,et al.  Blindsight Mediated by an S-Cone-independent Collicular Pathway: An fMRI Study in Hemispherectomized Subjects , 2010, Journal of Cognitive Neuroscience.

[12]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[13]  Barry B. Lee,et al.  Temporal frequency and chromatic processing in humans: an fMRI study of the cortical visual areas. , 2011, Journal of vision.

[14]  R. Hess,et al.  Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study. , 2010, Journal of vision.

[15]  Oren Sagher,et al.  Functional mapping. , 2013, Journal of neurosurgery.

[16]  Essa Yacoub,et al.  Functional mapping of the magnocellular and parvocellular subdivisions of human LGN , 2014, NeuroImage.

[17]  Alan Cowey,et al.  Wavelength sensitivity in blindsight , 1989, Nature.

[18]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[19]  R W Guillery,et al.  Distinct functions for direct and transthalamic corticocortical connections. , 2011, Journal of neurophysiology.

[20]  L. Laemle A Golgy study of cellular morphology in the superficial layers of superior colliculus man, Saimiri, and Macaca. , 1981, Journal fur Hirnforschung.

[21]  J. Maunsell,et al.  The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Karl Zilles,et al.  Neuronal and glial structures of the superficial layers of the human superior colliculus , 1999, Anatomy and Embryology.

[23]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[24]  G. Boynton,et al.  Adaptation: from single cells to BOLD signals , 2006, Trends in Neurosciences.

[25]  Robert F Hess,et al.  Deficient responses from the lateral geniculate nucleus in humans with amblyopia , 2009, The European journal of neuroscience.

[26]  Kathy T Mullen,et al.  The contribution of color to global motion processing. , 2008, Journal of vision.

[27]  S. Clarke,et al.  Commissural connections of human superior colliculus , 2002, Neuroscience.

[28]  G. Grön,et al.  Monocular visual activation patterns in albinism as revealed by functional magnetic resonance imaging , 2004, Human brain mapping.

[29]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[30]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[31]  E. Callaway,et al.  Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[33]  R. Hess,et al.  Selectivity of human retinotopic visual cortex to S‐cone‐opponent, L/M‐cone‐opponent and achromatic stimulation , 2007, The European journal of neuroscience.

[34]  Keith A Schneider,et al.  Subcortical Mechanisms of Feature-Based Attention , 2011, The Journal of Neuroscience.

[35]  Nathan Hall,et al.  S-cone Visual Stimuli Activate Superior Colliculus Neurons in Old World Monkeys: Implications for Understanding Blindsight , 2014, Journal of Cognitive Neuroscience.

[36]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[37]  D. Kersten,et al.  Orientation-tuned FMRI adaptation in human visual cortex. , 2005, Journal of neurophysiology.

[38]  A. Wunderlich,et al.  Brain activation during human navigation: gender-different neural networks as substrate of performance , 2000, Nature Neuroscience.

[39]  R W Guillery,et al.  The role of the thalamus in the flow of information to the cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  M. Cynader,et al.  Receptive-field organization of monkey superior colliculus. , 1972, Journal of neurophysiology.

[41]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[42]  Wyeth Bair,et al.  Neuronal Responses during and after the Presentation of Static Visual Stimuli in Macaque Primary Visual Cortex , 2010, The Journal of Neuroscience.

[43]  P. Schiller,et al.  Composition of geniculostriate input ot superior colliculus of the rhesus monkey. , 1979, Journal of neurophysiology.

[44]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[45]  R. Masland,et al.  Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells , 2001, Nature Neuroscience.

[46]  Dirk Kerzel,et al.  Visually guided movements to color targets , 2006, Experimental Brain Research.

[47]  Laurent Itti,et al.  Color-Related Signals in the Primate Superior Colliculus , 2009, The Journal of Neuroscience.

[48]  David Ress,et al.  Topography of covert visual attention in human superior colliculus. , 2010, Journal of neurophysiology.

[49]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[50]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[51]  Sabine Kastner,et al.  Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. , 2005, Journal of neurophysiology.

[53]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[54]  D. B. Bender,et al.  Distribution of corticotectal cells in macaque , 2003, Experimental Brain Research.

[55]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[56]  Guy M. McKhann,et al.  Non-invasive Mapping of Connections Between Human Thalamus and Cortex Using Diffusion Imaging , 2004 .

[57]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[58]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[59]  P. Schiller,et al.  Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. , 1972, Journal of neurophysiology.

[60]  Chris Tailby,et al.  Adaptable Mechanisms That Regulate the Contrast Response of Neurons in the Primate Lateral Geniculate Nucleus , 2009, The Journal of Neuroscience.

[61]  Omar H. Butt,et al.  Hierarchical and homotopic correlations of spontaneous neural activity within the visual cortex of the sighted and blind , 2015, Front. Hum. Neurosci..

[62]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.

[63]  Dorita H. F. Chang,et al.  The selectivity of responses to red‐green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study , 2015, The European journal of neuroscience.

[64]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[65]  Nicolas P Cottaris,et al.  Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[66]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[67]  A. Cowey,et al.  Chromatic priming in hemianopic visual fields , 2003, Experimental Brain Research.

[68]  Y. Zhou,et al.  Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings , 1996, Visual Neuroscience.

[69]  P. Cotton,et al.  Contralateral visual hemifield representations in the human pulvinar nucleus. , 2007, Journal of neurophysiology.

[70]  R. Marrocco,et al.  Monkey superior colliculus: properties of single cells and their afferent inputs. , 1977, Journal of neurophysiology.

[71]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[72]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[73]  A. Burkhalter,et al.  Organization of corticocortical connections in human visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Lennie,et al.  Color search and visual field segregation , 1997, Perception & psychophysics.

[75]  Alain Ptito,et al.  Absence of S‐cone input in human blindsight following hemispherectomy , 2006, The European journal of neuroscience.

[76]  H. Duvernoy The Human Brain , 1999, Springer Vienna.

[77]  Frank Tong,et al.  Attention alters orientation processing in the human lateral geniculate nucleus , 2015, Nature Neuroscience.

[78]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[79]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[80]  Wolf Singer,et al.  Functional Connectivity Patterns of Visual Cortex Reflect its Anatomical Organization. , 2016, Cerebral cortex.

[81]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[82]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. , 2004, Journal of neurophysiology.

[83]  Paul R. Martin,et al.  Temporal contrast sensitivity in the lateral geniculate nucleus of a New World monkey, the marmoset Callithrix jacchus , 1999, The Journal of physiology.

[84]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[85]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[86]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[87]  P. Lennie,et al.  Contrast adaptation in striate cortex of macaque , 1989, Vision Research.

[88]  A. T. Smith,et al.  Dissociating vision and visual attention in the human pulvinar. , 2009, Journal of neurophysiology.

[89]  Stephen A Engel,et al.  Adaptation of Oriented and Unoriented Color-Selective Neurons in Human Visual Areas , 2005, Neuron.

[90]  A Bradley,et al.  Failures of isoluminance caused by ocular chromatic aberrations. , 1992, Applied optics.

[91]  R. Hess,et al.  The amblyopic deficit and its relationship to geniculo-cortical processing streams. , 2010, Journal of neurophysiology.

[92]  A. Graybiel Periodic-compartmental distribution of acetylcholinesterase in the superior colliculus of the human brain , 1979, Neuroscience.

[93]  S Murray Sherman,et al.  Thalamus plays a central role in ongoing cortical functioning , 2016, Nature Neuroscience.

[94]  K Ugurbil,et al.  Detunable transverse electromagnetic (TEM) volume coil for high‐field NMR , 2002, Magnetic resonance in medicine.

[95]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[96]  C. Furmanski,et al.  Selective Adaptation to Color Contrast in Human Primary Visual Cortex , 2001, The Journal of Neuroscience.

[97]  Laurent Petit,et al.  Neural basis of visually guided head movements studied with fMRI. , 2003, Journal of neurophysiology.

[98]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[99]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.