Prediction of transmembrane topology of F0 proteins from Escherichia coli F1F0 ATP synthase using variational and hydrophobic moment analyses.

The a subunit, a membrane protein from the E. coli F1F0 ATP synthase has been examined by Fourier analysis of hydrophobicity and of amino-acid residue variation. The amino-acid sequences of homologous subunits from Vibrio alginolyticus, Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, Schizosaccharomyces pombe and Candida parapsilosis were used in the variability analysis. By Fourier analysis of sequence variation, two transmembrane helices are predicted to have one face in contact with membrane lipids, while the other spans are predicted to be more shielded from the lipids by protein. By Fourier analysis of hydrophobicity, six amphipathic alpha-helical segments are predicted in extra-membrane regions, including the region from Glu-196 to Asn-214. Fourier analysis of sequence variation in the b- and the c-subunits of the Escherichia coli F1F0 ATP synthase indicates that the single transmembrane span of the b-subunit and the C-terminal span of the c subunit each have a face in contact with membrane lipids. On the basis of this analysis topographical models for the a- and c-subunits and for the F0 complex are proposed.

[1]  S. Howitt,et al.  The proton pore in the Escherichia coli F0F1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents F0-mediated proton permeability. , 1988, Biochimica et biophysica acta.

[2]  F. Sanger,et al.  Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. , 1982, Journal of molecular biology.

[3]  J. Walker,et al.  DNA sequence of a gene cluster coding for subunits of the F0 membrane sector of ATP synthase in Rhodospirillum rubrum. Support for modular evolution of the F1 and F0 sectors. , 1988, The Biochemical journal.

[4]  M. Hanson,et al.  Sequence and transcription analysis of the Petunia mitochondrial gene for the ATP synthase proteolipid subunit. , 1986, Nucleic acids research.

[5]  J. Beckwith,et al.  A genetic approach to analyzing membrane protein topology. , 1986, Science.

[6]  G. Macino,et al.  Assembly of the mitochondrial membrane system: Sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci , 1980, Cell.

[7]  C. DeLisi,et al.  Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. , 1987, Journal of molecular biology.

[8]  C. Hawthorne,et al.  Organization and sequence of the genes coding for the proton-translocating ATPase of Bacillus megaterium. , 1989, The Journal of biological chemistry.

[9]  G. Cox,et al.  The mechanism of ATP synthase: a reassessment of the functions of the b and a subunits. , 1986, Biochimica et biophysica acta.

[10]  B. Cain,et al.  Interaction between Glu-219 and His-245 within the a subunit of F1F0-ATPase in Escherichia coli. , 1988, The Journal of biological chemistry.

[11]  T. Akihama,et al.  Nucleotide sequence of the F0-ATPase subunit 9 gene from tomato mitochondria. , 1990, Nucleic acids research.

[12]  H. Lodish,et al.  Multi-spanning membrane proteins: how accurate are the models? , 1988, Trends in biochemical sciences.

[13]  G. Macino,et al.  Two intervening sequences in the ATPase subunit 6 gene of Neurospora crassa. A short intron (93 base-pairs) and a long intron that is stable after excision. , 1984, Journal of molecular biology.

[14]  A. Morikami,et al.  The pea mitochondrial ATPase subunit 9 gene is located upstream of the ATPase α-subunit gene , 1987 .

[15]  H. Récipon,et al.  The sequence of the sunflower mitochondrial ATPase subunit 9 gene. , 1990, Nucleic acids research.

[16]  Christian Bjørbæk,et al.  The transmembrane topology of the α subunit from the ATPase in Escherichia coli analyzed by PhoA protein fusions , 1990 .

[17]  L. Krumholz,et al.  Nucleotide sequence of the unc operon of Vibrio alginolyticus. , 1989, Nucleic acids research.

[18]  R. D. Simoni,et al.  A topological analysis of subunit alpha from Escherichia coli F1F0-ATP synthase predicts eight transmembrane segments. , 1990, The Journal of biological chemistry.

[19]  L. Krumholz,et al.  Characterization of the H(+)-pumping F1F0 ATPase of Vibrio alginolyticus , 1990, Journal of bacteriology.

[20]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[21]  J. Velours,et al.  Isolation of the ATP synthase subunit 6 and sequence of the mitochondrial ATP6 gene of the yeast Candida parapsilosis. , 1991, European journal of biochemistry.

[22]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[23]  W. Sebald,et al.  The proton conducting F0-part of bacterial ATP synthases. , 1984, Biochimica et biophysica acta.

[24]  J. Gallant,et al.  Topology, organization, and function of the psi subunit in the F0 sector of the H+-ATPase of Escherichia coli. , 1983, The Journal of biological chemistry.

[25]  T. Noumi,et al.  ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. , 1989, Annual review of biochemistry.

[26]  T. A. Brown,et al.  Nucleotide sequence of a region of the mitochondrial genome of Aspergillus nidulans including the gene for ATPase subunit 6. , 1982, Nucleic acids research.

[27]  T. Hamamoto,et al.  Sequence and over-expression of subunits of adenosine triphosphate synthase in thermophilic bacterium PS3. , 1988, Biochimica et biophysica acta.

[28]  A. E. Senior,et al.  Secondary and tertiary structure of membrane proteins involved in proton translocation. , 1983, Biochimica et biophysica acta.

[29]  J. Popot,et al.  On the microassembly of integral membrane proteins. , 1990, Annual review of biophysics and biophysical chemistry.

[30]  J. Brunner,et al.  Structure of the membrane-embedded F0 part of F1F0 ATP synthase from Escherichia coli as inferred from labeling with 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. , 1984, Biochemistry.

[31]  J. Alam,et al.  Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120 , 1988, Journal of bacteriology.

[32]  J. Walker,et al.  The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. , 1984, Biochimica et biophysica acta.

[33]  P. Friedl,et al.  The topology of the proton translocating F0 component of the ATP synthase from E. coli K12: studies with proteases. , 1983, The EMBO journal.

[34]  T. Kohchi,et al.  Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. , 1988, Journal of molecular biology.

[35]  C. Kumamoto,et al.  Genetic evidence for interaction between the a and b subunits of the F0 portion of the Escherichia coli proton translocating ATPase. , 1986, The Journal of biological chemistry.

[36]  R. H. Fillingame,et al.  Mutation of alanine 24 to serine in subunit c of the Escherichia coli F1F0-ATP synthase reduces reactivity of aspartyl 61 with dicyclohexylcarbodiimide. , 1991, The Journal of biological chemistry.

[37]  H. Lester,et al.  Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. , 1988, Science.

[38]  V. Walbot,et al.  Sequence of the F0-atpase proteolipid (atp9) gene from rice mitochondria. , 1990, Nucleic acids research.

[39]  T. Steitz,et al.  Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[40]  G. Feher,et al.  The bacterial photosynthetic reaction center as a model for membrane proteins. , 1989, Annual review of biochemistry.

[41]  R. H. Fillingame,et al.  Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. , 1982, The Journal of biological chemistry.

[42]  A. Crofts,et al.  The use of gene fusions to examine the membrane topology of the L-subunit of the photosynthetic reaction center and of the cytochrome b subunit of the bc1 complex from Rhodobacter sphaeroides. , 1991, The Journal of biological chemistry.

[43]  J. Gray,et al.  A sixth subunit of ATP synthase, an F0 component, is encoded in the pea chloroplast genome , 1986, The EMBO journal.

[44]  Yongbiae Xue,et al.  Nucleotide sequence and transcription of the sugar beet mitochondrial F0F1-ATPase subunit 9 gene. , 1989, Nucleic acids research.

[45]  W A Gilbert,et al.  The prediction of transmembrane protein sequences and their conformation: an evaluation. , 1990, Trends in biochemical sciences.

[46]  S. Howitt,et al.  The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. , 1987, Biochimica et biophysica acta.

[47]  B. Cain,et al.  Mutagenesis of the alpha subunit of the F1Fo-ATPase from Escherichia coli. Mutations at Glu-196, Pro-190, and Ser-199. , 1988, The Journal of biological chemistry.

[48]  B. Cain,et al.  Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. , 1989, The Journal of biological chemistry.

[49]  S. Howitt,et al.  Mutational analysis of the function of the a-subunit of the F0F1-APPase of Escherichia coli. , 1990, Biochimica et biophysica acta.

[50]  Smith El The evolution of proteins. , 1966 .

[51]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[52]  A. E. Senior,et al.  Integration of F1 and the membrane sector of the proton-ATPase of Escherichia coli. Role of subunit "b" (uncF protein). , 1983, The Journal of biological chemistry.

[53]  C. S. Levings,et al.  Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria. , 1985, Plant physiology.

[54]  A. E. Senior The proton-translocating ATPase of Escherichia coli. , 1990, Annual review of biophysics and biophysical chemistry.

[55]  B. Cain,et al.  Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli. , 1986, The Journal of biological chemistry.

[56]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.