La logica computazionale quantistica dei sistemi aperti

There are physical phenomena that can be hardly interpreted by standard quantum paradigm: decoherence, noise, measurements in the middle of a computation - basically, any computational process that in- volves an interaction with the environment - call into play an unavoidable loss of information that renders the process itself irreversible. To conve- niently describe such situations, alongside with the kind of processes that

[1]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[2]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[4]  D. Aharonov A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.

[5]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[6]  D. Butnariu,et al.  Triangular Norm-Based Measures and Games with Fuzzy Coalitions , 1993 .

[7]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[8]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[9]  M DiracPA The Principles Of Quantum Mechanics , 1930 .

[10]  Roberto Giuntini,et al.  The Algebraic Structure of an Approximately Universal System of Quantum Computational Gates , 2009 .

[11]  Francesco Paoli,et al.  Some generalizations of fuzzy structures in quantum computational logic , 2011, Int. J. Gen. Syst..

[12]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Adrian Bowyer,et al.  Robust arithmetic for multivariate Bernstein-form polynomials , 2000, Comput. Aided Des..

[14]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[15]  H. S. Allen The Quantum Theory , 1928, Nature.

[16]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[17]  Teich,et al.  Two-photon interference in a Mach-Zehnder interferometer. , 1990, Physical review letters.

[18]  E. Beltrametti,et al.  Bericht: On the Logic of Quantum Mechanics , 1973 .

[19]  R. Feynman Simulating physics with computers , 1999 .

[20]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[21]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[22]  C. G. D.,et al.  The Principles of Quantum Mechanics , 1935, Nature.

[23]  Giuseppe Sergioli,et al.  Towards Quantum Computational Logics , 2010 .

[24]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[25]  Hector Freytes,et al.  Representing continuous t-norms in quantum computation with mixed states , 2010 .

[26]  Alan M. Turing,et al.  Computability and λ-definability , 1937, Journal of Symbolic Logic.

[27]  Hector Freytes,et al.  Continuous Functions as Quantum Operations: a probabilistic approximation , 2016, 1602.07845.

[28]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .