Human Interaction with Graphs: A Visual Querying Perspective

Interacting with graphs using queries has emerged as an important research problem for real-world applications that center on large graph data. Given the syntactic complexity of graph query languages (e.g., SPARQL, Cypher), visual graph query interfaces make it easy for non-programmers to query such graph data repositories. In this book, we present recent developments in the emerging area of visual graph querying paradigm that bridges traditional graph querying with human computer interaction (HCI). Specifically, we focus on techniques that emphasize deep integration between the visual graph query interface and the underlying graph query engine. We discuss various strategies and guidance for constructing graph queries visually, interleaving processing of graph queries and visual actions, visual exploration of graph query results, and automated performance study of visual graph querying frameworks. In addition, this book highlights open problems and new research directions. In summary, in this book, we review and summarize the research thus far into the integration of HCI and graph querying to facilitate user-friendly interaction with graph-structured data, giving researchers a snapshot of the current state of the art in this topic, and future research directions.

[1]  Philip S. Yu,et al.  Graph indexing: a frequent structure-based approach , 2004, SIGMOD '04.

[2]  Tok Wang Ling,et al.  LotusX: A Position-Aware XML Graphical Search System with Auto-Completion , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[3]  Philip S. Yu,et al.  CP-index: on the efficient indexing of large graphs , 2011, CIKM '11.

[4]  Cong Yu,et al.  Enabling Schema-Free XQuery with meaningful query focus , 2008, The VLDB Journal.

[5]  Shuigeng Zhou,et al.  QUBLE: towards blending interactive visual subgraph search queries on large networks , 2014, The VLDB Journal.

[6]  Yun Peng,et al.  Towards Efficient Authenticated Subgraph Query Service in Outsourced Graph Databases , 2014, IEEE Transactions on Services Computing.

[7]  Sourav S. Bhowmick,et al.  MustBlend: Blending Visual Multi-Source Twig Query Formulation and Query Processing in RDBMS , 2013, International Conference on Database Systems for Advanced Applications.

[8]  Tiziana Catarci,et al.  Visual Query Systems for Databases: A Survey , 1997, J. Vis. Lang. Comput..

[9]  Wing-Kai Hon,et al.  MyBenchmark: generating databases for query workloads , 2014, The VLDB Journal.

[10]  Sourav S. Bhowmick,et al.  GBLENDER: towards blending visual query formulation and query processing in graph databases , 2010, SIGMOD Conference.

[11]  Ian H. Witten,et al.  Identifying Hierarchical Structure in Sequences: A linear-time algorithm , 1997, J. Artif. Intell. Res..

[12]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[13]  Jeffrey Xu Yu,et al.  iGraph: A Framework for Comparisons of Disk-Based Graph Indexing Techniques , 2010, Proc. VLDB Endow..

[14]  Nils M. Kriege,et al.  Journal of Graph Algorithms and Applications Practical Sahn Clustering for Very Large Data Sets and Expensive Distance Metrics , 2022 .

[15]  Peter Triantafillou,et al.  Performance and Scalability of Indexed Subgraph Query Processing Methods , 2015, Proc. VLDB Endow..

[16]  Jeong-Hoon Lee,et al.  Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph databases , 2013, SIGMOD '13.

[17]  Carl Gutwin,et al.  A Predictive Model of Human Performance With Scrolling and Hierarchical Lists , 2009, Hum. Comput. Interact..

[18]  Antonella De Angeli,et al.  Computation of Interface Aesthetics , 2015, CHI.

[19]  Andrei Z. Broder,et al.  On the resemblance and containment of documents , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[20]  Yuli Ye,et al.  Max-Sum diversification, monotone submodular functions and dynamic updates , 2012, PODS '12.

[21]  Sourav S. Bhowmick,et al.  Efficient algorithms for generalized subgraph query processing , 2012, CIKM '12.

[22]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[23]  Sourav S. Bhowmick,et al.  DaVinci: Data-driven visual interface construction for subgraph search in graph databases , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[24]  Alex Endert,et al.  VIGOR: Interactive Visual Exploration of Graph Query Results , 2018, IEEE Transactions on Visualization and Computer Graphics.

[25]  Sameh Elnikety,et al.  Systems for Big-Graphs , 2014, Proc. VLDB Endow..

[26]  Sourav S. Bhowmick,et al.  XBLEND: Visual XML Query Formulation Meets Query Processing , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[27]  Xuelong Li,et al.  A survey of graph edit distance , 2010, Pattern Analysis and Applications.

[28]  Divesh Srivastava,et al.  On query result diversification , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[29]  Curtis E. Dyreson,et al.  Data-driven Visual Graph Query Interface Construction and Maintenance: Challenges and Opportunities , 2016, Proc. VLDB Endow..

[30]  GrayJim,et al.  Quickly generating billion-record synthetic databases , 1994 .

[31]  Alexandre N. Tuch,et al.  The role of visual complexity and prototypicality regarding first impression of websites: Working towards understanding aesthetic judgments , 2012, Int. J. Hum. Comput. Stud..

[32]  Leonid Libkin,et al.  Regular path queries on graphs with data , 2012, ICDT '12.

[33]  Madhav V. Marathe,et al.  Formal-Language-Constrained Path Problems , 1997, SIAM J. Comput..

[34]  Aniket Kittur,et al.  Data Mining Meets HCI: Making Sense of Large Graphs , 2012 .

[35]  Francesco Bonchi,et al.  Graph Query Reformulation with Diversity , 2015, KDD.

[36]  Ryen W. White,et al.  Exploratory Search: Beyond the Query-Response Paradigm , 2009, Exploratory Search: Beyond the Query-Response Paradigm.

[37]  Huahai Yang,et al.  Bias towards regular configuration in 2D pointing , 2010, CHI.

[38]  Katharina Reinecke,et al.  Predicting users' first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness , 2013, CHI.

[39]  Gabriel Valiente,et al.  A graph distance metric combining maximum common subgraph and minimum common supergraph , 2001, Pattern Recognit. Lett..

[40]  George H. L. Fletcher,et al.  Generating Flexible Workloads for Graph Databases , 2016, Proc. VLDB Endow..

[41]  Chengkai Li,et al.  VIIQ: Auto-Suggestion Enabled Visual Interface for Interactive Graph Query Formulation , 2015, Proc. VLDB Endow..

[42]  Wei Jin,et al.  SAPPER: Subgraph Indexing and Approximate Matching in Large Graphs , 2010, Proc. VLDB Endow..

[43]  Tovi Grossman,et al.  Modeling pointing at targets of arbitrary shapes , 2007, CHI.

[44]  K. Selçuk Candan,et al.  R2DB: A System for Querying and Visualizing Weighted RDF Graphs , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[45]  Alexandru Iosup,et al.  LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms , 2016, Proc. VLDB Endow..

[46]  J. J. McGregor,et al.  Backtrack search algorithms and the maximal common subgraph problem , 1982, Softw. Pract. Exp..

[47]  M. Tamer Özsu,et al.  XBench benchmark and performance testing of XML DBMSs , 2004, Proceedings. 20th International Conference on Data Engineering.

[48]  Jeffrey Xu Yu,et al.  Connected substructure similarity search , 2010, SIGMOD Conference.

[49]  Curtis E. Dyreson,et al.  VISUAL: Simulation of Visual Subgraph Query Formulation to Enable Automated Performance Benchmarking , 2017, IEEE Transactions on Knowledge and Data Engineering.

[50]  Ernesto Damiani,et al.  Computing graphical queries over XML data , 2001, TOIS.

[51]  Colin Ware,et al.  Visualizing graphs in three dimensions , 2008, TAP.

[52]  Sourav S. Bhowmick,et al.  DB ⋈ HCI: Towards Bridging the Chasm between Graph Data Management and HCI , 2014, DEXA.

[53]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[54]  Serge Abiteboul,et al.  Auto-completion learning for XML , 2012, SIGMOD Conference.

[55]  Philip S. Yu,et al.  Substructure similarity search in graph databases , 2005, SIGMOD '05.

[56]  Yinghui Wu,et al.  Ontology-based subgraph querying , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[57]  Surajit Chaudhuri,et al.  Overview of Data Exploration Techniques , 2015, SIGMOD Conference.

[58]  Majid Sarrafzadeh,et al.  Variable voltage scheduling , 1995, ISLPED '95.

[59]  Wei Wang,et al.  Efficient mining of frequent subgraphs in the presence of isomorphism , 2003, Third IEEE International Conference on Data Mining.

[60]  Sreenivas Gollapudi,et al.  An axiomatic approach for result diversification , 2009, WWW '09.

[61]  Sean Bechhofer,et al.  Visual complexity and aesthetic perception of web pages , 2008, SIGDOC '08.

[62]  Thomas Ertl,et al.  Visual SPARQL querying based on extended filter/flow graphs , 2014, AVI.

[63]  Shuigeng Zhou,et al.  BOOMER: Blending Visual Formulation and Processing of P -Homomorphic Queries on Large Networks , 2018, SIGMOD Conference.

[64]  Jeffrey Xu Yu,et al.  TreeSpan: efficiently computing similarity all-matching , 2012, SIGMOD Conference.

[65]  Yinghui Wu,et al.  SLQ: a user-friendly graph querying system , 2014, SIGMOD Conference.

[66]  Kai Huang,et al.  PICASSO: Exploratory Search of Connected Subgraph Substructures in Graph Databases , 2017, Proc. VLDB Endow..

[67]  Catarcitiziana,et al.  Visual Query Systems for Databases , 1997 .

[68]  Shumin Zhai,et al.  Refining Fitts' law models for bivariate pointing , 2003, CHI '03.

[69]  Panos M. Pardalos,et al.  A note on the complexity of longest path problems related to graph coloring , 2004, Appl. Math. Lett..

[70]  Jeffrey Xu Yu,et al.  Diversifying Top-K Results , 2012, Proc. VLDB Endow..

[71]  Curtis E. Dyreson,et al.  Interruption-Sensitive Empty Result Feedback: Rethinking the Visual Query Feedback Paradigm for Semistructured Data , 2015, CIKM.

[72]  Wilfred Ng,et al.  Fg-index: towards verification-free query processing on graph databases , 2007, SIGMOD '07.

[73]  Jianzhong Li,et al.  Graph homomorphism revisited for graph matching , 2010, Proc. VLDB Endow..

[74]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[75]  Roded Sharan,et al.  Sigma: a Set-Cover-Based Inexact Graph Matching Algorithm , 2010, J. Bioinform. Comput. Biol..

[76]  Alex Endert,et al.  VISAGE: Interactive Visual Graph Querying , 2016, AVI.

[77]  DANIELE BRAGA,et al.  XQBE (XQuery By Example): A visual interface to the standard XML query language , 2005, TODS.

[78]  Antonella De Angeli,et al.  Quantification of interface visual complexity , 2014, AVI.

[79]  Miro Kraetzl,et al.  Graph distances using graph union , 2001, Pattern Recognit. Lett..

[80]  Jianliang Xu,et al.  AutoG: A Visual Query Autocompletion Framework for Graph Databases , 2016, Proc. VLDB Endow..

[81]  Allen Newell,et al.  The keystroke-level model for user performance time with interactive systems , 1980, CACM.

[82]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[83]  Sourav S. Bhowmick,et al.  ViSual: An HCI-inspired simulator for blending visual subgraph query construction and processing , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[84]  Sourav S. Bhowmick,et al.  Every Click You Make, IWill Be Fetching It: Efficient XML Query Processing in RDMS Using GUI-driven Prefetching , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[85]  David Ahlström,et al.  Modeling and improving selection in cascading pull-down menus using Fitts' law, the steering law and force fields , 2005, CHI.

[86]  Sandeep Pandey,et al.  Unsupervised extraction of template structure in web search queries , 2012, WWW.

[87]  Guoliang Li,et al.  Efficient Fuzzy Type-Ahead Search in XML Data , 2012, IEEE Transactions on Knowledge and Data Engineering.

[88]  Christos Faloutsos,et al.  GRAPHITE: A Visual Query System for Large Graphs , 2008, 2008 IEEE International Conference on Data Mining Workshops.