Derivation of an eigenvalue probability density function relating to the Poincaré disk

A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33 2045―57) gives the eigenvalue probability density function for the top N x N sub-block of a Haar distributed matrix from U(N + n). In the case n ≥ N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A ―1 B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many-body quantum state, and to the one-component plasma, on the pseudosphere.

[1]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[2]  P. Leboeuf Random matrices, random polynomials and Coulomb systems , 1999, cond-mat/9911222.

[3]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[4]  Y. Fyodorov,et al.  On Absolute Moments of Characteristic Polynomials of a Certain Class of Complex Random Matrices , 2006, math-ph/0602032.

[5]  P. J. Forrester Quantum conductance problems and the Jacobi ensemble , 2006 .

[6]  P. Forrester Log-Gases and Random Matrices , 2010 .

[7]  P. J. Forrester,et al.  Exact statistical properties of the zeros of complex random polynomials , 1999 .

[8]  A. Edelman,et al.  How many eigenvalues of a random matrix are real , 1994 .

[9]  Yan V Fyodorov,et al.  A few remarks on colour–flavour transformations, truncations of random unitary matrices, Berezin reproducing kernels and Selberg-type integrals , 2006, math-ph/0610045.

[10]  L. Hua Harmonic analysis of functions of several complex variables in the classical domains , 1963 .

[11]  Benoit Collins Product of random projections, Jacobi ensembles and universality problems arising from free probability , 2005 .

[12]  Manjunath Krishnapur Zeros of Random Analytic Functions , 2006 .

[13]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[14]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[15]  Manjunath Krishnapur From random matrices to random analytic functions , 2007, 0711.1378.

[16]  N. Balazs,et al.  Chaos on the pseudosphere , 1986 .

[17]  G. Dunne Hilbert space for charged particles in perpendicular magnetic fields , 1992 .

[18]  Y. Fyodorov,et al.  On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values , 2008, 0809.2726.

[19]  T. Wu,et al.  Dirac monopole without strings : monopole harmonics , 1976 .

[20]  A. Comtet On the Landau Levels on the Hyperbolic Plane , 1987 .

[21]  Gabriel Téllez,et al.  Two-Dimensional Coulomb Systems on a Surface of Constant Negative Curvature , 1998 .

[22]  J. Caillol,et al.  Exact results for a two-dimensional one-component plasma on a sphere , 1981 .