Robust Mars Atmospheric Entry Integrated Navigation based on Parameter Sensitivity

Abstract A robust integrated navigation algorithm based on a special robust desensitized extended Kalman filtering with analytical gain (ADEKF) during the Mars atmospheric entry is proposed. The robust ADEKF is realized by minimizing a new function penalized by a trace weighted norm of the state error sensitivities and giving a closed-form gain matrix. The uncertainties of the Mars atmospheric density and the lift-to-drag ratio are modeled. Sensitivity matrices are defined to character the parameter uncertainties, and corresponding perturbation matrices are introduced to describe the navigation errors with respect to the parameter uncertainties. The numerical simulation results show that the robust integrated navigation algorithm based on the robust ADEKF effectively reduces the negative effects of the two parameter uncertainties and has good consistency during the Mars entry.

[1]  R. Manning,et al.  Mars exploration entry, descent and landing challenges , 2006, 2006 IEEE Aerospace Conference.

[2]  Fernando Abilleira,et al.  Mars Science Laboratory Navigation Results , 2012 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  C. Karlgaard,et al.  Desensitised Kalman filtering , 2013 .

[5]  G. E. Dille Guidance , 1930 .

[6]  Robert D. Braun,et al.  Entry Descent and Landing Challenges of Human Mars Exploration , 2006 .

[7]  Xiuqiang Jiang,et al.  High-precision Mars Entry Integrated Navigation Under Large Uncertainties , 2014 .

[8]  Christopher D. Karlgaard,et al.  Desensitized Optimal Filtering , 2011 .

[9]  Jean Francois Levesque,et al.  Innovative Navigation Schemes for State and Parameter Estimation During Mars Entry , 2007 .

[10]  Richard W. Powell,et al.  Entry System Design Considerations for Mars Landers , 2001 .

[11]  Hans Seywald,et al.  Desensitizing the Pin-Point Landing Trajectory on Mars , 2008 .

[12]  Robert H. Bishop,et al.  Evaluation of Mars Entry Reconstructured Trajectories Based on Hypothetical 'Quick-Look' Entry Navigation Data , 2000 .

[13]  M.C. Heyne,et al.  Spacecraft Entry Navigation using Sigma Point Kalman Filtering , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[14]  J. Junkins,et al.  On the Consider Kalman Filter , 2010 .

[15]  Xiuqiang Jiang,et al.  RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties , 2015 .

[16]  H. Shen,et al.  Desensitized divided difference filtering for induction motor state estimation , 2012, Proceedings of the 2012 44th Southeastern Symposium on System Theory (SSST).

[17]  B. Tapley,et al.  Statistical Orbit Determination , 2004 .

[18]  Rudy Avi Boehmer,et al.  Navigation analysis and design for Mars entry , 1998 .

[19]  Cheng-Chih Chu Development of advanced entry, descent, and landing technologies for future Mars missions , 2006, 2006 IEEE Aerospace Conference.

[20]  Shengying Zhu,et al.  Observability-Based Beacon Configuration Optimization for Mars Entry Navigation , 2015 .

[21]  Richard W. Powell,et al.  Desensitizing the Minimum-Fuel Powered Descent For Mars Pinpoint Landing , 2010 .

[22]  Shuang Li,et al.  Innovative Mars entry integrated navigation using modified multiple model adaptive estimation , 2014 .

[23]  Xiangyu Huang,et al.  Radio beacons/IMU integrated navigation for Mars entry , 2011 .

[24]  Xiuqiang Jiang,et al.  Review and prospect of guidance and control for Mars atmospheric entry , 2014 .

[25]  K. Edquist,et al.  Communications blackout predictions for atmospheric entry of Mars Science Laboratory , 2005, 2005 IEEE Aerospace Conference.

[26]  D. D. Morabito,et al.  The Spacecraft Communications Blackout Problem Encountered during Passage or Entry of Planetary Atmospheres , 2002 .

[27]  Zhihua Wang,et al.  Consider unobservable uncertain parameters using radio beacon navigation during Mars entry , 2015 .

[28]  R. H. Bishop,et al.  Robust entry navigation using hierarchical filter architectures regulated with gating networks , 2001 .

[29]  Lily Yang,et al.  Atmospheric environment during maneuvering descent from Martian orbit , 1989 .

[30]  E. Glenn Lightsey,et al.  Real-Time Navigation for Mars Missions Using the Mars Network , 2008 .

[31]  Premkumar R. Menon,et al.  Mars Reconnaissance Orbiter Navigation Strategy for Mars Science Laboratory Entry, Descent and Landing Telecommunication Relay Support , 2012 .

[32]  C. G. Justus,et al.  Validation of Mars Global Reference Atmospheric Model (Mars-GRAM 2001) and planned new features , 2006 .

[33]  Robert D. Braun,et al.  Guidance, Navigation, and Control System Performance Trades for Mars Pinpoint Landing , 2010 .

[34]  Zhihua Wang,et al.  Schmidt-Kalman Filter for Navigation Biases Mitigation during Mars Entry , 2015 .

[35]  Gavin F. Mendeck,et al.  Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission , 2013 .