An Enhanced Indexing And Ranking Technique On The Semantic Web

With the fast growth of the Internet, more and more information is available on the Web. The Semantic Web has many features which cannot be handled by using the traditional search engines. It extracts metadata for each discovered Web documents in RDF or OWL formats, and computes relations between documents. We proposed a hybrid indexing and ranking technique for the Semantic Web which finds relevant documents and computes the similarity among a set of documents. First, it returns with the most related document from the repository of Semantic Web Documents (SWDs) by using a modified version of the ObjectRank technique. Then, it creates a sub-graph for the most related SWDs. Finally, It returns the hubs and authorities of these document by using the HITS algorithm. Our technique increases the quality of the results and decreases the execution time of processing the user's query.

[1]  Jiang Huiping Information Retrieval and the semantic web , 2010, 2010 International Conference on Educational and Information Technology.

[2]  Wang Yong-gui,et al.  Research on semantic Web mining , 2010, 2010 International Conference On Computer Design and Applications.

[3]  Hsinchun Chen Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms , 1995 .

[4]  Carole A. Goble The Semantic Web: an evolution for a revolution , 2003, Comput. Networks.

[5]  Haralambos Marmanis,et al.  Algorithms of the Intelligent Web , 2009 .

[6]  Atanas Kiryakov,et al.  Semantic Annotation, Indexing, and Retrieval , 2003, SEMWEB.

[7]  Timothy W. Finin,et al.  Information retrieval on the semantic web , 2002, CIKM '02.

[8]  Espen Andersen,et al.  Edging Toward the Semantic Web: Protocols, Curation, and Seeds , 2010, UBIQ.

[9]  Emanuele Della Valle,et al.  Squiggle: a Semantic Search Engine for Indexing and Retrieval of Multimedia Content , 2006, SEMPS.

[10]  Mehran Mohsenzadeh,et al.  An ontology-based approach for ranking suggested semantic web services , 2010, 2010 6th International Conference on Advanced Information Management and Service (IMS).

[11]  Ramanathan V. Guha,et al.  TAP: a Semantic Web platform , 2003, Comput. Networks.

[12]  Yun Peng,et al.  Swoogle: A semantic web search and metadata engine , 2004, CIKM 2004.

[13]  Vagelis Hristidis,et al.  ObjectRank: Authority-Based Keyword Search in Databases , 2004, VLDB.

[14]  Timothy W. Finin,et al.  Swoogle: a search and metadata engine for the semantic web , 2004, CIKM '04.

[15]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[16]  Ramanathan V. Guha,et al.  Semantic search , 2003, WWW '03.

[17]  Timothy W. Finin,et al.  Information retrieval on the Semantic Web: Integrating inference and retrieval , 2003, SIGIR 2003.

[18]  Steffen Staab,et al.  SEAL: a framework for developing SEmantic PortALs , 2001, K-CAP '01.

[19]  Hsinchun Chen,et al.  Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms , 1995, J. Am. Soc. Inf. Sci..