Cavitation suppression and transformation of turbulence structure in the cross flow around a circular cylinder: Surface morphology and wettability effects

[1]  M. Timoshevskiy,et al.  Vapor concentration and bimodal distributions of turbulent fluctuations in cavitating flow around a hydrofoil , 2023, International Journal of Heat and Fluid Flow.

[2]  O. el Moctar,et al.  Thermodynamic effects on nanobubble's collapse-induced erosion using molecular dynamic simulation , 2023, Physics of Fluids.

[3]  Ebrahim Kadivar,et al.  Numerical investigation of the cavitating flow and the cavitation-induced noise around one and two circular cylinders , 2023, Ocean Engineering.

[4]  Huaiyu Cheng,et al.  Numerical investigation of inner structure and its formation mechanism of cloud cavitating flow , 2023, International Journal of Multiphase Flow.

[5]  Ebrahim Kadivar,et al.  Reactive-dynamic characteristic of a nanobubble collapse near a solid boundary using molecular dynamic simulation , 2023, Physics of Fluids.

[6]  H. Jia,et al.  Experimental Investigation of the Supercavitation and Hydrodynamic Characteristics of High-Speed Projectiles with Hydrophobic and Hydrophilic Coatings , 2022, Fluids.

[7]  Qiang Sun The Hydrophobic Effects: Our Current Understanding , 2022, Molecules.

[8]  J. Okajima,et al.  Thermodynamic Suppression Effect of Cavitation Arising in a Hydrofoil in 140°C Hot Water , 2022, Journal of Fluids Engineering.

[9]  P. Brandner,et al.  Nucleation effects on cloud cavitation about a hydrofoil , 2022, Journal of Fluid Mechanics.

[10]  M. Timoshevskiy,et al.  Effect of an end-clearance width on the gap cavitation structure: Experiments on a wall-bounded axis-equipped hydrofoil , 2022, Ocean Engineering.

[11]  F. Ravelet,et al.  Cavitation control using passive flow control techniques , 2021, Physics of Fluids.

[12]  O. el Moctar,et al.  An experimental investigation of transient cavitation control on a hydrofoil using hemispherical vortex generators , 2021, Journal of Hydrodynamics.

[13]  M. Timoshevskiy,et al.  Distribution of probability of the vapor phase occurrence in a cavitating flow based on the concentration of PIV tracers in liquid , 2021, Experiments in Fluids.

[14]  Huaiyu Cheng,et al.  Euler–Lagrange study of cavitating turbulent flow around a hydrofoil , 2021, Physics of Fluids.

[15]  E. Orlova,et al.  Influence of roughness on polar and dispersed components of surface free energy and wettability properties of copper and steel surfaces , 2021 .

[16]  D. Tormey,et al.  A review on turbulent flow over rough surfaces: Fundamentals and theories , 2021 .

[17]  Ebrahim Kadivar Experimental and Numerical Investigations of Cavitation Control Using Cavitating-bubble Generators , 2020 .

[18]  M. Timoshevskiy,et al.  Statistical structure of the velocity field in cavitating flow around a 2D hydrofoil , 2020 .

[19]  M. Murillo,et al.  Data-driven prediction of the equivalent sand-grain height in rough-wall turbulent flows , 2020, Journal of Fluid Mechanics.

[20]  S. Bhattacharya,et al.  Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations , 2019, Journal of Micromanufacturing.

[21]  J. Macdonald,et al.  The effect of surface roughness on aerodynamic forces and vibrations for a circular cylinder in the critical Reynolds number range , 2019, Journal of Wind Engineering and Industrial Aerodynamics.

[22]  A. Malkin,et al.  Physicochemical phenomena leading to slip of a fluid along a solid surface , 2019, Russian Chemical Reviews.

[23]  M. Yokoyama,et al.  Introduction of Multiscaled Longitudinal Vortices by Fractal-Patterned Surface Roughness , 2019, Journal of Flow Control, Measurement & Visualization.

[24]  M. Timoshevskiy,et al.  Gap Cavitation in the End Clearance of a Guide Vane of a Hydroturbine: Numerical and Experimental Investigation , 2019, Journal of Engineering Thermophysics.

[25]  G. Manik,et al.  Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review , 2018 .

[26]  Huicong Liu,et al.  Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications , 2017 .

[27]  A. Tuteja,et al.  Bioinspired surfaces for turbulent drag reduction , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  A. Yu. Kravtsova,et al.  Cavitation on NACA0015 hydrofoils with different wall roughness: high-speed visualization of the surface texture effects , 2016, Journal of Visualization.

[29]  N. Zubkov Multitool deformation and cutting in applying fins to heat-exchanger pipe , 2015 .

[30]  Jingxian Zhang,et al.  Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow , 2015 .

[31]  Jingxian Zhang,et al.  Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow , 2015 .

[32]  O. Kabov,et al.  Determination of surface tension and contact angle by the axisymmetric bubble and droplet shape analysis , 2015 .

[33]  Michael Sarrazin,et al.  A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera) , 2014, 1406.7436.

[34]  K. Hanjalic,et al.  High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil , 2014 .

[35]  Jooyoun Kim,et al.  The effects of surface energy and roughness on the hydrophobicity of woven fabrics , 2014 .

[36]  Jean-Luc Reboud,et al.  Mass loss simulation in cavitation erosion: Fatigue criterion approach , 2013 .

[37]  Farid Bakir,et al.  Study of the cavitating instability on a grooved Venturi profile , 2012, 1212.4243.

[38]  N. Zubkov,et al.  Novel Electrical Joints Using Deformation Machining Technology—Part II: Experimental Verification , 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[39]  Doris Vollmer,et al.  Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating , 2012, Science.

[40]  I. Smurov,et al.  Computer-Controlled Detonation Spraying: From Process Fundamentals Toward Advanced Applications , 2011 .

[41]  P. Brandner,et al.  An experimental investigation of cloud cavitation about a sphere , 2010, Journal of Fluid Mechanics.

[42]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[43]  Ronald J. Adrian,et al.  Hairpin vortex organization in wall turbulencea) , 2007 .

[44]  L. Yongjian,et al.  Experimental and numerical investigations on development of cavitation erosion pits on solid surface , 2007 .

[45]  Bharat Bhushan,et al.  Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity , 2006 .

[46]  Olivier Coutier-Delgosha,et al.  Effect of Wall Roughness on the Dynamics of Unsteady Cavitation , 2005 .

[47]  E. Charlaix,et al.  Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. , 2005, Physical review letters.

[48]  Brane Širok,et al.  Relationship between cavitation structures and cavitation damage , 2004 .

[49]  Kiran Bhaganagar,et al.  Effect of Roughness on Wall-Bounded Turbulence , 2004 .

[50]  Dmitriy M. Markovich,et al.  Application of a PDF method for the statistical processing of experimental data , 2004 .

[51]  J. Jiménez Turbulent flows over rough walls , 2004 .

[52]  Laurent Keirsbulck,et al.  Surface roughness effects on turbulent boundary layer structures , 2002 .

[53]  A. Parker,et al.  Water capture by a desert beetle , 2001, Nature.

[54]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[55]  S. Ceccio,et al.  Examination of the flow near the leading edge of attached cavitation. Part 1. Detachment of two-dimensional and axisymmetric cavities , 1998, Journal of Fluid Mechanics.

[56]  G. E. Reisman,et al.  Observations of shock waves in cloud cavitation , 1998, Journal of Fluid Mechanics.

[57]  M. M. Zdravkovich,et al.  Flow Around Circular Cylinders Volume 1: Fundamentals , 1997 .

[58]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[59]  W. H. Melbourne,et al.  The effect of free-stream turbulence on sectional lift forces on a circular cylinder , 1996, Journal of Fluid Mechanics.

[60]  N. Fujisawa,et al.  Possibility of drag reduction using d-type roughness , 1993 .

[61]  J. Ribeiro,et al.  EFFECTS OF SURFACE ROUGHNESS ON THE TWO-DIMENSIONAL FLOW PAST CIRCULAR CYLINDERS I: MEAN FORCES AND PRESSURES , 1991 .

[62]  J. Wolfram,et al.  Hydrodynamic Loading on Macro-Roughened Cylinders of Various Aspect Ratios , 1989 .

[63]  L. Bond,et al.  Ultrasonics , 1988 .

[64]  J. Franc,et al.  Unsteady attached cavitation on an oscillating hydrofoil , 1987, Journal of Fluid Mechanics.

[65]  C. Apelt,et al.  The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 104 and 105 , 1982, Journal of Fluid Mechanics.

[66]  C. Farell,et al.  Surface-roughness effects on the mean flow past circular cylinders , 1975, Journal of Fluid Mechanics.

[67]  E. Achenbach Influence of surface roughness on the cross-flow around a circular cylinder , 1971, Journal of Fluid Mechanics.

[68]  Roger E. A. Arndt,et al.  Rough Surface Effects on Cavitation Inception , 1968 .

[69]  R. Arndt,et al.  CAVITATION NEAR SURFACES OF DISTRIBUTED ROUGHNESS. , 1967 .

[70]  J. W. Holl,et al.  The Inception of Cavitation on Isolated Surface Irregularities , 1960 .

[71]  Xikun Wang,et al.  Force and flow characteristics of a circular cylinder with uniform surface roughness at subcritical Reynolds numbers , 2015 .

[72]  Mingxi Wan,et al.  Fundamentals of Cavitation , 2015 .

[73]  M. V. Rijsbergen A review of sheet cavitation inception mechanisms , 2015 .

[74]  Darong Chen,et al.  Effect of Grooves on Cavitation Around the Body of Revolution , 2010 .

[75]  Xuefeng Gao,et al.  Biophysics: Water-repellent legs of water striders , 2004, Nature.

[76]  G. R. Grek,et al.  Origin of Turbulence in Near-Wall Flows , 2002 .

[77]  R. A. Antonia,et al.  Rough-Wall Turbulent Boundary Layers , 1991 .