Quantum theory of non-hermitian optical binding between nanoparticles

Recent experiments demonstrate highly tunable non-reciprocal coupling between levitated nanoparticles due to optical binding [Rieser et al., Science 377, 987 (2022)]. In view of recent experiments cooling nanoparticles to the quantum regime, we here develop the quantum theory of small dielectric objects interacting via the forces and torques induced by scattered tweezer photons. The interaction is fundamentally non-hermitian and accompanied by correlated quantum noise. We present the corresponding Markovian quantum master equation, show how to reach non-reciprocal and unidirectional coupling, and identify unique quantum signatures of optical binding. Our work provides the theoretical tools for exploring and exploiting the rich quantum physics of non-reciprocally coupled nanoparticle arrays.

[1]  P. Zemánek,et al.  Cold damping of levitated optically coupled nanoparticles , 2023, Optica.

[2]  T. S. Monteiro,et al.  Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle , 2023, Nature Physics.

[3]  P. Zemánek,et al.  Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum , 2023, Nature communications.

[4]  T. Ozawa,et al.  Coexistence of stable and unstable population dynamics in a nonlinear non-Hermitian mechanical dimer , 2023, Physical Review E.

[5]  Y. Ashida,et al.  Non-Hermitian Physics of Levitated Nanoparticle Array , 2023, 2301.05439.

[6]  P. Maurer,et al.  Quantum Theory of Light Interaction with a Dielectric Sphere: Towards 3D Ground-State Cooling , 2022, 2212.04838.

[7]  Hui-zhu Hu,et al.  Yoctonewton force detection based on optically levitated oscillator , 2022, Fundamental Research.

[8]  R. Reimann,et al.  Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle , 2022, Nature Physics.

[9]  P. Maurer,et al.  Suppressing Recoil Heating in Levitated Optomechanics using Squeezed Light , 2022, 2209.05858.

[10]  Xingfan Chen,et al.  Nanoscale Electric Field Sensing Using Levitated Nano-resonator with Net Charge , 2022, Photonics Research.

[11]  Rui Li,et al.  Experiments with levitated force sensor challenge theories of dark energy , 2022, Nature Physics.

[12]  R. Filip,et al.  Tuneable Gaussian entanglement in levitated nanoparticle arrays , 2022, npj Quantum Information.

[13]  S. Ryu,et al.  Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect , 2022, Physical Review X.

[14]  R. Soref,et al.  Non-Hermitian Sensing in Photonics and Electronics: A Review , 2022, Sensors.

[15]  Masatoshi Sato,et al.  Non-Hermitian Topological Phenomena: A Review , 2022, Annual Review of Condensed Matter Physics.

[16]  L. Novotný,et al.  Scalable all-optical cold damping of levitated nanoparticles , 2022, Nature Nanotechnology.

[17]  M. Aspelmeyer,et al.  Force-Gradient Sensing and Entanglement via Feedback Cooling of Interacting Nanoparticles. , 2022, Physical review letters.

[18]  N. Kiesel,et al.  Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles , 2022, Science.

[19]  Y. Chong,et al.  Amplification of quantum signals by the non-Hermitian skin effect , 2022, 2202.10727.

[20]  A. Hemmerich,et al.  Observation of a continuous time crystal , 2022, Science.

[21]  A. Clerk Introduction to quantum non-reciprocal interactions: from non-Hermitian Hamiltonians to quantum master equations and quantum feedforward schemes , 2022, 2201.00894.

[22]  F. Marino,et al.  Two-dimensional quantum motion of a levitated nanosphere , 2021, Physical Review Research.

[23]  D. Moore,et al.  Coherent Scattering of Low Mass Dark Matter from Optically Trapped Sensors. , 2021, Physical review letters.

[24]  P. Barker,et al.  Sympathetic cooling and squeezing of two colevitated nanoparticles , 2021, Physical Review Research.

[25]  M. Aspelmeyer,et al.  Levitodynamics: Levitation and control of microscopic objects in vacuum , 2021, Science.

[26]  B. Stickler,et al.  Interferometric control of nanorotor alignment , 2021, Physical Review A.

[27]  R. Reimann,et al.  Sub-Kelvin Feedback Cooling and Heating Dynamics of an Optically Levitated Librator. , 2021, Physical review letters.

[28]  P. Maurer,et al.  Quantum Electrodynamics with a Nonmoving Dielectric Sphere: Quantizing Lorenz-Mie Scattering , 2021, Journal of the Optical Society of America B.

[29]  B. Stickler,et al.  Theory of nanoparticle cooling by elliptic coherent scattering , 2021, 2104.13134.

[30]  L. Novotný,et al.  Quantum control of a nanoparticle optically levitated in cryogenic free space , 2021, Nature.

[31]  G. T,et al.  Coherent scattering-mediated correlations between levitated nanospheres , 2021, 2102.08969.

[32]  M. Kim,et al.  Quantum rotations of nanoparticles , 2021, Nature Reviews Physics.

[33]  N. Kiesel,et al.  Real-time optimal quantum control of mechanical motion at room temperature , 2020, Nature.

[34]  P. Zemánek,et al.  Stochastic dynamics of optically bound matter levitated in vacuum , 2020, Optica.

[35]  A. Nunnenkamp,et al.  Correspondence between Non-Hermitian Topology and Directional Amplification in the Presence of Disorder. , 2020, Physical review letters.

[36]  N. Aggarwal,et al.  Searching for New Physics with a Levitated-Sensor-Based Gravitational-Wave Detector. , 2020, Physical review letters.

[37]  D. Moore,et al.  Searching for new physics using optically levitated sensors , 2020, Quantum Science and Technology.

[38]  Jacob M. Taylor,et al.  Mechanical quantum sensing in the search for dark matter , 2020, Quantum Science and Technology.

[39]  K. Khosla,et al.  Quantum Persistent Tennis Racket Dynamics of Nanorotors. , 2020, Physical review letters.

[40]  B. Stickler,et al.  Cooling Nanorotors by Elliptic Coherent Scattering. , 2020, Physical review letters.

[41]  Y. Ashida,et al.  Non-Hermitian physics , 2020, Advances in Physics.

[42]  Xingyu Gao,et al.  Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell , 2020, 2004.02384.

[43]  A. Clerk,et al.  Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics , 2020, Nature Communications.

[44]  David Grass,et al.  Cooling of a levitated nanoparticle to the motional quantum ground state , 2020, Science.

[45]  B. Stickler,et al.  Entangling levitated nanoparticles by coherent scattering , 2020, Physical Review A.

[46]  Jan Carl Budich,et al.  Exceptional topology of non-Hermitian systems , 2019, 1912.10048.

[47]  A. Nunnenkamp,et al.  Topological framework for directional amplification in driven-dissipative cavity arrays , 2019, Nature Communications.

[48]  Xingyu Gao,et al.  Ultrasensitive torque detection with an optically levitated nanorotor , 2019, Nature Nanotechnology.

[49]  P. Huillery,et al.  Spin-cooling of the motion of a trapped diamond , 2019, Nature.

[50]  R. Reimann,et al.  Theory for cavity cooling of levitated nanoparticles via coherent scattering: Master equation approach , 2019, Physical Review A.

[51]  U. Schmid,et al.  Silicon microcavity arrays with open access and a finesse of half a million , 2019, Light, science & applications.

[52]  N. Kiesel,et al.  Cavity Cooling of a Levitated Nanosphere by Coherent Scattering. , 2018, Physical review letters.

[53]  Lukas Novotny,et al.  Cavity-Based 3D Cooling of a Levitated Nanoparticle via Coherent Scattering. , 2018, Physical review letters.

[54]  A. Clerk,et al.  Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing , 2018, Nature Communications.

[55]  S. Yelin,et al.  Quantum optomechanics of a two-dimensional atomic array , 2018, 1810.01052.

[56]  Liang Jiang,et al.  Quantum Noise Theory of Exceptional Point Amplifying Sensors. , 2018, Physical review letters.

[57]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[58]  Stefan Kuhn,et al.  Probing macroscopic quantum superpositions with nanorotors , 2018, New Journal of Physics.

[59]  V Vedral,et al.  Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity. , 2017, Physical review letters.

[60]  Mauro Paternostro,et al.  Spin Entanglement Witness for Quantum Gravity. , 2017, Physical review letters.

[61]  Hendrik Ulbricht,et al.  Force sensing with an optically levitated charged nanoparticle , 2017, 1706.09774.

[62]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[63]  J. Ralph,et al.  Real-Time Kalman Filter: Cooling of an Optically Levitated Nanoparticle , 2017, 1712.07921.

[64]  A. Metelmann,et al.  Nonreciprocal quantum interactions and devices via autonomous feedforward , 2016, 1610.06621.

[65]  B. Stickler,et al.  Rotranslational cavity cooling of dielectric rods and disks , 2016, 1605.05674.

[66]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[67]  J. Prat-Camps,et al.  On-chip quantum interference of a superconducting microsphere , 2016, 1603.01553.

[68]  Gavin W. Morley,et al.  Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions. , 2015, Physical review letters.

[69]  P. Rabl,et al.  P T -symmetry breaking in the steady state of microscopic gain–loss systems , 2015, 1508.00594.

[70]  Aristide Dogariu,et al.  Actio et reactio in optical binding. , 2015, Optics express.

[71]  James Bateman,et al.  Near-field interferometry of a free-falling nanoparticle from a point-like source , 2013, Nature Communications.

[72]  H. Ritsch,et al.  Scattering approach to two-colour light forces and self-ordering of polarizable particles , 2013, 1310.6246.

[73]  A. Geraci,et al.  Detecting high-frequency gravitational waves with optically levitated sensors. , 2012, Physical review letters.

[74]  C. Emary,et al.  Phase transitions and dark-state physics in two-color superradiance , 2011, 1109.2456.

[75]  J. Ignacio Cirac,et al.  Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols , 2010, 1010.3109.

[76]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[77]  P. Zemánek,et al.  Long-range one-dimensional longitudinal optical binding. , 2008, Physical review letters.

[78]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[79]  S. Barnett,et al.  On the electromagnetic force on a dielectric medium , 2006 .

[80]  Pavel Zemánek,et al.  Analysis of optical binding in one dimension , 2006 .

[81]  Samarendra Mohanty,et al.  Optical binding between dielectric particles. , 2004, Optics express.

[82]  Cirac,et al.  Collective laser cooling of two trapped ions. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[83]  P. Barber Absorption and scattering of light by small particles , 1984 .

[84]  Serge Haroche,et al.  Superradiance: An essay on the theory of collective spontaneous emission , 1982 .

[85]  B. Dewitt Point Transformations in Quantum Mechanics , 1952 .

[86]  K. Aikawa,et al.  Optical cold damping of neutral nanoparticles near the ground state in an optical lattice , 2022 .

[87]  Burns,et al.  Optical binding. , 1989, Physical review letters.