Formation and properties of ZrO2–Cu composite nanoglass films

[1]  Shengli Zhu,et al.  Effect of atomic structure on preferential oxidation of alloys: amorphous versus crystalline Cu-Zr , 2020, Journal of Materials Science & Technology.

[2]  Zumin Wang,et al.  Tailoring metal film texture by use of high atomic mobility at metal-semiconductor interfaces , 2019, Applied Surface Science.

[3]  Yongchang Liu,et al.  The formation and evolution mechanism of amorphous layer surrounding Nb nano-grains in Nb-Al system during mechanical alloying process , 2019, Journal of Alloys and Compounds.

[4]  Yongchang Liu,et al.  Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling , 2019, Journal of Materials Science & Technology.

[5]  H. Fecht,et al.  Growth mode transition in Au-based thin film metallic glasses , 2018, Thin Solid Films.

[6]  L. Gu,et al.  Natural oxidation of amorphous Cu Zr1- alloys , 2018, Applied Surface Science.

[7]  C. Kübel,et al.  Structure and Properties of Nanoglasses , 2018, Advanced Engineering Materials.

[8]  Zumin Wang,et al.  Vapor-defect-solid growth mechanism for NanoNets utilizing natural defect networks in polycrystals , 2018, Materials & Design.

[9]  W. Wang,et al.  Ultrastable metallic glasses formed on cold substrates , 2018, Nature Communications.

[10]  Y. Ivanisenko,et al.  Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties , 2017 .

[11]  Baojia Wu,et al.  Structural, optical, and electrical properties of Cu-doped ZrO 2 films prepared by magnetron co-sputtering , 2017 .

[12]  N. Chen,et al.  A new class of non-crystalline materials: Nanogranular metallic glasses , 2017 .

[13]  K. Albe,et al.  Interfaces and interphases in nanoglasses: Surface segregation effects and their implications on structural properties , 2016 .

[14]  J. Yi,et al.  Enhanced photoluminescence properties of Cu-doped ZnO thin films deposited by simultaneous RF and DC magnetron sputtering , 2016 .

[15]  C. Kübel,et al.  Nanoscale morphology of Ni50Ti45Cu5 nanoglass , 2016 .

[16]  R. Ballarini,et al.  Compromising high strength and ductility in nanoglass–metallic glass nanolaminates , 2016 .

[17]  D. V. Louzguine-Luzgin,et al.  A nanoglass alloying immiscible Fe and Cu at the nanoscale. , 2015, Nanoscale.

[18]  H. Gleiter,et al.  Plasticity of a scandium-based nanoglass , 2015 .

[19]  Li Wang,et al.  Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. , 2015, Journal of the American Chemical Society.

[20]  Hongkai Wu,et al.  Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications , 2015, Scientific Reports.

[21]  N. Chen,et al.  The ultrastable kinetic behavior of an Au-based nanoglass , 2014 .

[22]  H. Gleiter,et al.  Nanostructured solids – From nano-glasses to quantum transistors , 2014 .

[23]  M. Esashi,et al.  A novel Ti-based nanoglass composite with submicron-nanometer-sized hierarchical structures to modulate osteoblast behaviors. , 2013, Journal of materials chemistry. B.

[24]  P. Cabarrocas,et al.  Microstructural, optical and electrical properties of annealed ZnO:Al thin films , 2013 .

[25]  M. Esashi,et al.  Structural investigation and mechanical properties of a representative of a new class of materials: nanograined metallic glasses , 2013, Nanotechnology.

[26]  H. Gleiter,et al.  Atomic structure and structural stability of Sc75Fe25 nanoglasses. , 2012, Nano letters.

[27]  M. Esashi,et al.  Formation and properties of Au-based nanograined metallic glasses , 2011 .

[28]  Fanming Meng,et al.  Characterization and photocatalytic activity of TiO2 thin films prepared by RF magnetron sputtering , 2010 .

[29]  D. Mckenzie,et al.  van der Pauw method for measuring resistivity of a plane sample with distant boundaries. , 2009, The Review of scientific instruments.

[30]  Wei Liu,et al.  Size and Structural Dependence of Cohesive Energy in Cu , 2008 .

[31]  J. He,et al.  Effects of deposition parameters on tantalum films deposited by direct current magnetron sputtering , 2008 .

[32]  Shu-min Zhao,et al.  Optical properties and structural characterization of bias sputtered ZrO2 films , 2008 .

[33]  J. Rakoczy,et al.  Catalytic properties of Al2O3 deposited by ion sputtering using DC and RF sources , 2005 .

[34]  Z. Qiao,et al.  Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films' mass density. , 2005, Applied optics.

[35]  F. Sciortino One liquid, two glasses , 2002, Nature materials.

[36]  James M. Howe,et al.  Bonding, structure, and properties of metal/ceramic interfaces: Part 1 Chemical bonding, chemical reaction, and interfacial structure , 1993 .

[37]  L. Feldman,et al.  Clustering on surfaces , 1992 .

[38]  Nanocrystalline Solids,et al.  Nanocrystalline solids , 1991 .

[39]  N. Medvedeva,et al.  The Electronic Structure and Cohesive Energy of HfO2, ZrO2, TiO2, and SnO2 Crystals , 1990 .

[40]  R. Birringer,et al.  Modified atomic structure in a PdFeSi nanoglass. A Mössbauer study , 1989 .

[41]  D. M. Sanders,et al.  Glassy Optical Coatings By Multisource Evaporation , 1982, Other Conferences.

[42]  G. Teufer,et al.  The crystal structure of tetragonal ZrO2 , 1962 .