Consistent Subspace Identification of Errors-in-Variables Hammerstein Systems

In this article, a consistent subspace identification method (SIM) is proposed for block-oriented errors-in-variables Hammerstein systems. Due to that the existing SIMs using parity subspace based on noisy measurements may result in biased parameter estimates, we propose a scheme for the consistent system parameter estimation, which estimates the noise-free Hankel matrix using available noisy measurements and noise variances. A 2-D search method is proposed to estimate the unknown noise variances from available noisy measurements. After that consistent estimations of the Hammerstein system parameters can be then retrieved from the estimated noise-free Hankel matrix following the same algorithm framework of the existing SIMs using parity subspace. Two simulation examples are included to support the effectiveness and merits of the proposed method.

[1]  Xianqiang Yang,et al.  Robust Global Identification of LPV Errors-in-Variables Systems With Incomplete Observations , 2022, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[2]  Fengwei Chen,et al.  Gray-Box Parsimonious Subspace Identification of Hammerstein-Type Systems , 2021, IEEE Transactions on Industrial Electronics.

[3]  Peter C. Young,et al.  Data-Driven Modeling of Wireless Power Transfer Systems With Slowly Time-Varying Parameters , 2020, IEEE Transactions on Power Electronics.

[4]  Peter C. Young,et al.  Data-Driven Modeling of Wireless Power Transfer Systems With Multiple Transmitters , 2020, IEEE Transactions on Power Electronics.

[5]  Xianqiang Yang,et al.  Nonlinear System Identification With Robust Multiple Model Approach , 2020, IEEE Transactions on Control Systems Technology.

[6]  Fabrizio Dabbene,et al.  Identification of switched autoregressive exogenous systems from large noisy datasets , 2020, International journal of robust and nonlinear control.

[7]  Jianlong Qiu,et al.  A Novel EM Identification Method for Hammerstein Systems With Missing Output Data , 2020, IEEE Transactions on Industrial Informatics.

[8]  Feng Ding,et al.  Iterative Identification of Hammerstein Parameter Varying Systems With Parameter Uncertainties Based on the Variational Bayesian Approach , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[9]  Wei Xing Zheng,et al.  A graph subspace approach to system identification based on errors-in-variables system models , 2019, Autom..

[10]  Zhiqin Zhu,et al.  Prior-knowledge-based subspace identification for batch processes , 2019, Journal of Process Control.

[11]  Tao Liu,et al.  Subspace identification of Hammerstein-type nonlinear systems subject to unknown periodic disturbance , 2019, Int. J. Control.

[12]  Fei Liu,et al.  An Improved Consistent Subspace Identification Method Using Parity Space for State-space Models , 2019, International Journal of Control, Automation and Systems.

[13]  Xin Liu,et al.  Robust Identification of Nonlinear Systems With Missing Observations: The Case of State-Space Model Structure , 2019, IEEE Transactions on Industrial Informatics.

[14]  Fengwei Chen,et al.  Fixed point iteration‐based subspace identification of Hammerstein state‐space models , 2019, IET Control Theory & Applications.

[15]  Yongsheng Ding,et al.  An Augmented Model Approach for Identification of Nonlinear Errors-in-Variables Systems Using the EM Algorithm , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[16]  Noel A Cressie,et al.  Inference for Errors-in-Variables Models in the Presence of Systematic Errors with an Application to a Satellite Remote Sensing Campaign , 2018, Technometrics.

[17]  Feng Ding,et al.  A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation , 2018, J. Frankl. Inst..

[18]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[19]  Vito Cerone,et al.  Set-membership errors-in-variables identification of MIMO linear systems , 2018, Autom..

[20]  Qing-Guo Wang,et al.  Recursive subspace identification subject to relatively slow time-varying load disturbance , 2018, Int. J. Control.

[21]  Bin Wang,et al.  Generalized total Kalman filter algorithm of nonlinear dynamic errors-in-variables model with application on indoor mobile robot positioning , 2018, Acta Geodaetica et Geophysica.

[22]  Stefano Longo,et al.  Accuracy Versus Simplicity in Online Battery Model Identification , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[23]  Yongsheng Ding,et al.  Robust Identification of Nonlinear Errors-in-Variables Systems With Parameter Uncertainties Using Variational Bayesian Approach , 2017, IEEE Transactions on Industrial Informatics.

[24]  Giulio Bottegal,et al.  A nonparametric kernel-based approach to Hammerstein system identification , 2017, Autom..

[25]  Sami El-Ferik,et al.  Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach—Part 1 , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[26]  Sami El-Ferik,et al.  Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach—Part 2 , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[27]  Yongsheng Ding,et al.  A Data-Based Augmented Model Identification Method for Linear Errors-in-Variables Systems Based on EM Algorithm , 2017, IEEE Transactions on Industrial Electronics.

[28]  Tao Liu,et al.  Orthogonal projection based subspace identification against colored noise , 2017 .

[29]  Feng Ding,et al.  Parameter estimation algorithms for multivariable Hammerstein CARMA systems , 2016, Inf. Sci..

[30]  Han-Fu Chen,et al.  Recursive Identification of Multi-Input Multi-Output Errors-in-Variables Hammerstein Systems , 2015, IEEE Transactions on Automatic Control.

[31]  Roland Tóth,et al.  LPV system identification under noise corrupted scheduling and output signal observations , 2015, Autom..

[32]  Feng Ding,et al.  Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems , 2015, IEEE Transactions on Control Systems Technology.

[33]  Roland Tóth,et al.  A bias-corrected estimator for nonlinear systems with output-error type model structures , 2014, Autom..

[34]  Jan-Willem van Wingerden,et al.  Global Identification of Wind Turbines Using a Hammerstein Identification Method , 2013, IEEE Transactions on Control Systems Technology.

[35]  Torsten Söderström,et al.  Comparing some classes of bias-compensating least squares methods , 2013, Autom..

[36]  Torsten Söderström,et al.  A generalized instrumental variable estimation method for errors-in-variables identification problems , 2011, Autom..

[37]  Qinghua Zhang,et al.  Subspace identification methods for Hammerstein systems: rank constraint and dimension problem , 2010, Int. J. Control.

[38]  Lennart Ljung,et al.  Revisiting Hammerstein system identification through the Two-Stage Algorithm for bilinear parameter estimation , 2009, Autom..

[39]  Rik Pintelon,et al.  Uncertainty bounds on modal parameters obtained from stochastic subspace identification , 2008 .

[40]  Johan A. K. Suykens,et al.  Subspace identification of Hammerstein systems using least squares support vector machines , 2005, IEEE Transactions on Automatic Control.

[41]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[42]  István Vajk,et al.  Identification of nonlinear errors-in-variables models , 2003, Autom..

[43]  Jin Wang,et al.  A new subspace identification approach based on principal component analysis , 2002 .

[44]  Wei Xing Zheng,et al.  A bias correction method for identification of linear dynamic errors-in-variables models , 2002, IEEE Trans. Autom. Control..

[45]  S. Joe Qin,et al.  Consistent dynamic PCA based on errors-in-variables subspace identification , 2001 .

[46]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[47]  David T. Westwick,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[48]  Lijie Sun,et al.  Recursive Parsimonious Subspace Identification for Closed-Loop Hammerstein Nonlinear Systems , 2019, IEEE Access.

[49]  Alberto Bemporad,et al.  A bias-correction method for closed-loop identification of Linear Parameter-Varying systems , 2018, Autom..

[50]  Fouad Giri,et al.  Persistent Excitation by Deterministic Signals for Subspace Parametric Identification of MISO Hammerstein Systems , 2016, IEEE Transactions on Automatic Control.

[51]  Johan A. K. Suykens,et al.  Wiener-Hammerstein Benchmark , 2009 .

[52]  Enrique Baeyens,et al.  Subspace-based Identification Algorithms for Hammerstein and Wiener Models , 2005, Eur. J. Control.