Scattering suppression and wideband tunability of a flexible mantle cloak for finite-length conducting rods

A simple, thin, flexible mantle cloak for conducting rods based on scattering cancellation is analyzed, designed and experimentally realized. We show strong scattering suppression at all angles of incidence, for both far-field plane-wave and near-field Gaussian excitations. The required effective shunt surface impedance is realized by a subwavelength patch array, targeting the suppression of the dominant omnidirectional scattering contribution of a conductive rod. Full-wave simulations predict a total radar cross-section reduction better than 14 dB in the lossless case and nearly 8 dB when considering a lossy substrate in the cover. Measurements of the realized cloak are consistent and validate these numerical predictions. The proposed geometry is also shown to be an ideal platform for monolithic integration of varactor diodes, allowing real-time tuning of the effective surface capacitance of the cloak. We show with numerical simulations the possibility of tunable scattering suppression over 1 GHz of bandwidth by seamlessly integrating varactor diodes in our mantle cloak design.

[1]  Ahmed A. Kishk,et al.  Reduction of forward scattering from cylindrical objects using hard surfaces , 1996 .

[2]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[3]  A. Monti,et al.  Mantle cloak devices for TE and TM polarizations , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[4]  Igor Krois,et al.  Negative capacitor paves the way to ultra-broadband metamaterials , 2011 .

[5]  A. Alú,et al.  Mantle cloak: Invisibility induced by a surface , 2009 .

[6]  S. Tretyakov,et al.  Electromagnetic cloaking with metamaterials , 2009 .

[7]  S. Tretyakov,et al.  Transmission-Line Networks Cloaking Objects From Electromagnetic Fields , 2007, IEEE Transactions on Antennas and Propagation.

[8]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[9]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[10]  Hongsheng Chen,et al.  Practical Limitations of an Invisibility Cloak , 2009 .

[11]  Stefano Maci,et al.  Metasurface transformation optics , 2014 .

[12]  A. E. Culhaoglu,et al.  Experimental Characterization of a Broadband Transmission-Line Cloak in Free Space , 2011, IEEE Transactions on Antennas and Propagation.

[13]  Hongsheng Chen,et al.  Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. , 2011, Physical review letters.

[14]  A. Alú,et al.  Do Cloaked Objects Really Scatter Less , 2013, 1307.3996.

[15]  N. Engheta,et al.  Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. , 2007, Optics express.

[16]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[17]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[18]  S. Tretyakov,et al.  Broadband electromagnetic cloaking of long cylindrical objects. , 2009, Physical review letters.

[19]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Jason Soric,et al.  Experimental Verification of Three-Dimensional Plasmonic Cloaking in Free-Space , 2012 .

[21]  A. Alú,et al.  Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays , 2012 .

[22]  Douglas H. Werner,et al.  Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications , 2014 .

[23]  A. Alú,et al.  Invisibility and Cloaking Based on Scattering Cancellation , 2012, Advanced materials.

[24]  David R. Smith,et al.  A full-parameter unidirectional metamaterial cloak for microwaves. , 2013, Nature materials.

[25]  Andrea Alù,et al.  Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space , 2013 .

[26]  George V. Eleftheriades,et al.  Experimental Demonstration of Active Electromagnetic Cloaking , 2013 .

[27]  Jason Soric,et al.  Physical bounds on absorption and scattering for cloaked sensors , 2014 .

[28]  Alessandro Toscano,et al.  Controlling Scattering and Absorption With Metamaterial Covers , 2014, IEEE Transactions on Antennas and Propagation.

[29]  Tie Jun Cui,et al.  Experiments on active cloaking and illusion for Laplace equation. , 2013, Physical review letters.

[30]  F. A. Pinheiro,et al.  Tuning plasmonic cloaks with an external magnetic field. , 2013, Physical review letters.

[31]  J. Huangfu,et al.  Reconfigurable cloak for multiple operating frequencies , 2008 .

[32]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[33]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[34]  R. T. Wang,et al.  Application of the exact solution for scattering by an infinite cylinder to the estimation of scattering by a finite cylinder. , 1995, Applied optics.

[35]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  S. Tretyakov,et al.  Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches , 2007, IEEE Transactions on Antennas and Propagation.

[37]  Andrea Alù,et al.  Nanostructured graphene metasurface for tunable terahertz cloaking , 2013 .

[38]  A. Monti,et al.  Overcoming Mutual Blockage Between Neighboring Dipole Antennas Using a Low-Profile Patterned Metasurface , 2012, IEEE Antennas and Wireless Propagation Letters.

[39]  Francisco Medina,et al.  Transmission through stacked 2D periodic distributions of square conducting patches , 2012 .

[40]  Andrea Alù,et al.  Broadening the cloaking bandwidth with non-Foster metasurfaces. , 2013, Physical review letters.

[41]  Design and free-space measurements of a simple electromagnetic cloak for conducting cylindrical objects , 2013 .

[42]  SiC avalanche photodiode array with microlenses. , 2010, Optics express.

[43]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[44]  Alessandro Toscano,et al.  Multiband and Wideband Bilayer Mantle Cloaks , 2015, IEEE Transactions on Antennas and Propagation.