Membrane protein dynamics and detergent interactions within a crystal: a simulation study of OmpA.

Molecular dynamics (MD) simulations are used to explore the dynamics of a membrane protein in its crystal environment. A 50-ns-duration simulation (at a temperature of 300 K) is performed for the crystallographic unit cell of the bacterial outer membrane protein OmpA. The unit cell contains four protein molecules, plus detergent molecules and water. An excellent correlation between simulated and experimental values of crystallographic B factors is observed. Effectively, 0.2 micros of protein trajectories are obtained, allowing a critical assessment of simulation quality. Some deficiency in conformational sampling is demonstrated, but averaging over multiple trajectories improves this limitation. The previously undescribed structure and dynamics of detergent molecules in a unit cell are reported here, providing insight into the interactions important in the formation and stabilization of the crystalline environment at room temperature. In particular, we show that at room temperature the detergent molecules form a dynamic, extended micellar structure spreading over adjacent OmpA monomers within the crystal.

[1]  G. Schulz,et al.  High-resolution structure of the OmpA membrane domain. , 2000, Journal of molecular biology.

[2]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[3]  K. Schulten,et al.  Molecular Dynamics Simulations of Micelle Formation around Dimeric Glycophorin A Transmembrane Helices. , 2004, Biophysical journal.

[4]  A. Lee,et al.  Lipid-protein interactions in biological membranes: a structural perspective. , 2003, Biochimica et biophysica acta.

[5]  S E Ealick,et al.  Ab initio structure determination and refinement of a scorpion protein toxin. , 1997, Acta crystallographica. Section D, Biological crystallography.

[6]  E Garman,et al.  Cool data: quantity AND quality. , 1999, Acta crystallographica. Section D, Biological crystallography.

[7]  Jeremy C. Smith,et al.  Fluctuations and correlations in crystalline protein dynamics: a simulation analysis of staphylococcal nuclease. , 2005, Biophysical journal.

[8]  B. Halle Biomolecular cryocrystallography: structural changes during flash-cooling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G A Petsko,et al.  Fluctuations in protein structure from X-ray diffraction. , 1984, Annual review of biophysics and bioengineering.

[10]  D. Tobias,et al.  The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. , 2000, Biophysical journal.

[11]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[12]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[13]  K. Wüthrich,et al.  Solution NMR studies of the integral membrane proteins OmpX and OmpA from Escherichia coli , 2001, FEBS letters.

[14]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[15]  Tamar Schlick,et al.  Engineering teams up with computer-simulation and visualization tools to probe biomolecular mechanisms. , 2003, Biophysical journal.

[16]  Peter J Bond,et al.  The simulation approach to bacterial outer membrane proteins (Review) , 2004, Molecular membrane biology.

[17]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[18]  G. Schulz,et al.  Structure of the outer membrane protein A transmembrane domain , 1998, Nature Structural Biology.

[19]  M. Sansom,et al.  Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. , 2003, Journal of molecular biology.

[20]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[21]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[22]  Lukas K. Tamm,et al.  Structure of outer membrane protein A transmembrane domain by NMR spectroscopy , 2001, Nature Structural Biology.

[23]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[24]  M. Sansom,et al.  Lipid-protein interactions of integral membrane proteins: a comparative simulation study. , 2004, Biophysical journal.

[25]  S. White The progress of membrane protein structure determination , 2004, Protein science : a publication of the Protein Society.

[26]  Shinji Saito,et al.  Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing , 2002, Nature.

[27]  M S Sansom,et al.  Membrane simulations: bigger and better? , 2000, Current opinion in structural biology.

[28]  G. Phillips,et al.  Dynamics of proteins in crystals: comparison of experiment with simple models. , 2002, Biophysical journal.

[29]  Carmen Domene,et al.  Membrane protein simulations: ion channels and bacterial outer membrane proteins. , 2003, Advances in protein chemistry.

[30]  B. Hess Convergence of sampling in protein simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[32]  Wilfred F van Gunsteren,et al.  Molecular dynamics simulations of a double unit cell in a protein crystal: Volume relaxation at constant pressure and correlation of motions between the two unit cells , 2002, Proteins.

[33]  Peter J Bond,et al.  MD simulations of spontaneous membrane protein/detergent micelle formation. , 2004, Journal of the American Chemical Society.

[34]  Andrew Pang,et al.  Interdomain dynamics and ligand binding: molecular dynamics simulations of glutamine binding protein , 2003, FEBS letters.

[35]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[36]  José D Faraldo-Gómez,et al.  OmpA: a pore or not a pore? Simulation and modeling studies. , 2002, Biophysical journal.

[37]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[38]  Walter L Ash,et al.  Computer simulations of membrane proteins. , 2004, Biochimica et biophysica acta.

[39]  Benjamin A Hall,et al.  Dynamite: a simple way to gain insight into protein motions. , 2004, Acta crystallographica. Section D, Biological crystallography.

[40]  K. H. Kalk,et al.  Detergent organisation in crystals of monomeric outer membrane phospholipase A. , 2002, Journal of structural biology.

[41]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[42]  Sebastian Doniach,et al.  Protein flexibility in solution and in crystals , 1999 .