The processing element design for a large-scale spatio-temporal pattern clustering system

The clustering of spatio-temporal patterns are essential for many applications. Established from the biological analogy of the cortex, the parametrically coupled logistic map network (PCLMN) provides a viable solution to the clustering problem. To engineer for a single-chip spatio-temporal pattern clustering system, the highly modular PCLMN is designed in analog circuit. In this paper, the 0.6 μm 5 V CMOS design of the processing element is presented. The analog design employs self-calibration techniques to improve the accuracy and robustness of the nonlinear circuits. A fabricated element covers a die area of 0.55 mm2, and consumes 240 mW power at 5 V supply. After calibration, simulation and testing results show that the element fulfills the system-level requirement of the Cort-X model for driving signals up to 1 MHz.

[1]  Jan Van der Spiegel,et al.  A CMOS monolithic implementation of a nonlinear element for arbitrary 1D map generation , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[2]  Bernard Widrow,et al.  Layered neural nets for pattern recognition , 1988, IEEE Trans. Acoust. Speech Signal Process..

[3]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[4]  Jan Van der Spiegel,et al.  A CMOS monolithic implementation of a nonlinear interconnection module for a corticonic network , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[5]  J. Schemmel,et al.  A self-calibrating single-chip CMOS camera with logarithmic response , 2001, IEEE J. Solid State Circuits.

[6]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[7]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[8]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[9]  J. Martinerie,et al.  Characterizing Neurodynamic Changes Before Seizures , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[10]  S. Kavadias,et al.  A logarithmic response CMOS image sensor with on-chip calibration , 2000, IEEE Journal of Solid-State Circuits.

[11]  Michel Le Van Quyen,et al.  Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings , 2003, IEEE Transactions on Biomedical Engineering.

[12]  Stiliyan Kalitzin,et al.  Dynamical diseases of brain systems: different routes to epileptic seizures , 2003, IEEE Transactions on Biomedical Engineering.

[13]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[14]  Khalid H. Abed,et al.  CMOS VLSI Implementation of a Low-Power Logarithmic Converter , 2003, IEEE Trans. Computers.

[15]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[16]  Jorma Laaksonen,et al.  Variants of self-organizing maps , 1990, International 1989 Joint Conference on Neural Networks.

[17]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[18]  Nabil H. Farhat Corticonics: the way to designing machines with brainlike intelligence , 2000, SPIE Optics + Photonics.

[19]  Jan Van der Spiegel,et al.  GBOPCAD: a synthesis tool for high-performance gain-boosted opamp design , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  N. Farhat,et al.  Analog realization of arbitrary one-dimensional maps , 2003 .

[21]  Andrzej Bargiela,et al.  General fuzzy min-max neural network for clustering and classification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[22]  Brian Litt,et al.  Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients , 2003, IEEE Transactions on Biomedical Engineering.

[23]  T. Itakura,et al.  A temperature stable CMOS variable gain amplifier with 80-dB linearly controlled gain range , 2001, 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).

[24]  Nacer Abouchi,et al.  Exponential and Logarithmic Functions Using Standard CMOS 0.8 μm Technology , 1999 .