Treewidth Lower Bounds with Brambles

Abstract In this paper we present a new technique for computing lower bounds for graph treewidth. Our technique is based on the fact that the treewidth of a graph G is the maximum order of a bramble of G minus one. We give two algorithms: one for general graphs, and one for planar graphs. The algorithm for planar graphs is shown to give a lower bound for both the treewidth and branchwidth that is at most a constant factor away from the optimum. For both algorithms, we report on extensive computational experiments that show that the algorithms often give excellent lower bounds, in particular when applied to (close to) planar graphs.

[1]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[2]  D. West Introduction to Graph Theory , 1995 .

[3]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[4]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[5]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[6]  Siddharthan Ramachandramurthi,et al.  The Structure and Number of Obstructions to Treewidth , 1997, SIAM J. Discret. Math..

[7]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[8]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[9]  Jacques Carlier,et al.  New Lower and Upper Bounds for Graph Treewidth , 2003, WEA.

[10]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[11]  Reinhard Diestel,et al.  Two Short Proofs Concerning Tree-Decompositions , 2002, Combinatorics, Probability and Computing.

[12]  Brian Lucena,et al.  A New Lower Bound for Tree-Width Using Maximum Cardinality Search , 2003, SIAM J. Discret. Math..

[13]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[14]  Arie M. C. A. Koster,et al.  Contraction and Treewidth Lower Bounds , 2004, ESA.

[15]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[16]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[17]  B. Mohar,et al.  Graph Minors , 2009 .

[18]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[19]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[20]  Illya V. Hicks Planar Branch Decompositions II: The Cycle Method , 2005, INFORMS J. Comput..

[21]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[22]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[23]  Jacques Carlier,et al.  Heuristic and metaheuristic methods for computing graph treewidth , 2004, RAIRO Oper. Res..

[24]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[25]  Arie M. C. A. Koster,et al.  Degree-Based Treewidth Lower Bounds , 2005, WEA.

[26]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[27]  Hisao Tamaki,et al.  Optimal branch-decomposition of planar graphs in O(n3) Time , 2005, TALG.

[28]  Carsten Thomassen,et al.  Highly Connected Sets and the Excluded Grid Theorem , 1999, J. Comb. Theory, Ser. B.

[29]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[30]  Arie M. C. A. Koster,et al.  On the maximum cardinality search lower bound for treewidth , 2007, Discret. Appl. Math..

[31]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Erik D. Demaine,et al.  Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality , 2005, SODA '05.

[34]  Paul D. Seymour,et al.  Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..

[35]  Arie M. C. A. Koster,et al.  A Note on Contraction Degeneracy , 2004 .

[36]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[37]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[38]  Illya V. Hicks,et al.  Planar Branch Decompositions I: The Ratcatcher , 2005, INFORMS J. Comput..

[39]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[40]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..