Treewidth Lower Bounds with Brambles
暂无分享,去创建一个
Alexander Grigoriev | Arie M. C. A. Koster | Hans L. Bodlaender | H. Bodlaender | A. Koster | A. Grigoriev
[1] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[2] D. West. Introduction to Graph Theory , 1995 .
[3] K. Menger. Zur allgemeinen Kurventheorie , 1927 .
[4] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[5] Ioan Todinca,et al. Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..
[6] Siddharthan Ramachandramurthi,et al. The Structure and Number of Obstructions to Treewidth , 1997, SIAM J. Discret. Math..
[7] Arie M. C. A. Koster,et al. PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..
[8] Ravindra K. Ahuja,et al. Network Flows: Theory, Algorithms, and Applications , 1993 .
[9] Jacques Carlier,et al. New Lower and Upper Bounds for Graph Treewidth , 2003, WEA.
[10] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[11] Reinhard Diestel,et al. Two Short Proofs Concerning Tree-Decompositions , 2002, Combinatorics, Probability and Computing.
[12] Brian Lucena,et al. A New Lower Bound for Tree-Width Using Maximum Cardinality Search , 2003, SIAM J. Discret. Math..
[13] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[14] Arie M. C. A. Koster,et al. Contraction and Treewidth Lower Bounds , 2004, ESA.
[15] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[16] Vibhav Gogate,et al. A Complete Anytime Algorithm for Treewidth , 2004, UAI.
[17] B. Mohar,et al. Graph Minors , 2009 .
[18] Robin Thomas,et al. Call routing and the ratcatcher , 1994, Comb..
[19] Eyal Amir,et al. Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.
[20] Illya V. Hicks. Planar Branch Decompositions II: The Cycle Method , 2005, INFORMS J. Comput..
[21] Paul D. Seymour,et al. Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.
[22] JOSEP DÍAZ,et al. A survey of graph layout problems , 2002, CSUR.
[23] Jacques Carlier,et al. Heuristic and metaheuristic methods for computing graph treewidth , 2004, RAIRO Oper. Res..
[24] Hans L. Bodlaender,et al. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.
[25] Arie M. C. A. Koster,et al. Degree-Based Treewidth Lower Bounds , 2005, WEA.
[26] Hans L. Bodlaender,et al. Discovering Treewidth , 2005, SOFSEM.
[27] Hisao Tamaki,et al. Optimal branch-decomposition of planar graphs in O(n3) Time , 2005, TALG.
[28] Carsten Thomassen,et al. Highly Connected Sets and the Excluded Grid Theorem , 1999, J. Comb. Theory, Ser. B.
[29] Robin Thomas,et al. Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.
[30] Arie M. C. A. Koster,et al. On the maximum cardinality search lower bound for treewidth , 2007, Discret. Appl. Math..
[31] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[32] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[33] Erik D. Demaine,et al. Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality , 2005, SODA '05.
[34] Paul D. Seymour,et al. Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..
[35] Arie M. C. A. Koster,et al. A Note on Contraction Degeneracy , 2004 .
[36] Robin Thomas,et al. Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.
[37] Fedor V. Fomin,et al. Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.
[38] Illya V. Hicks,et al. Planar Branch Decompositions I: The Ratcatcher , 2005, INFORMS J. Comput..
[39] Arie M. C. A. Koster,et al. Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..
[40] Arie M. C. A. Koster,et al. Safe separators for treewidth , 2006, Discret. Math..