Privilegierte Strukturen neu betrachtet

Privilegierte Strukturen inspirieren den Entwurf von Substanzbibliotheken fur die medizinische Chemie. Wir haben 1.4 Millionen bioaktive Substanzen hinsichtlich der Dominanz bestimmter chemischer Grundgeruste (“frameworks”) untersucht. Dabei diente die Shannon-Entropie als ein quantitatives Mas fur deren Promiskuitat bezuglich der verschiedenen Targetfamilien. Diese Analyse offenbarte eine inverse Beziehung zwischen der Zahl an Wasserstoffbruckenakzeptoren und der beobachteten Promiskuitat des Grundgerusts. Des Weiteren scheinen sich strukturell einfache Geruste besonders fur Substanzbibliotheken mit unterschiedlichem Promiskuitatsgrad zu eignen, wohingegen sp3-reiche heterozyklische Grundgeruste den Entwurf von Target-fokussierten Bibliotheken ermoglichen. Die Resultate unserer Studie erlauben ein kritisches Hinterfragen von oft nur vermuteten besonderen Eigenschaften so genannter privilegierter Strukturen und weisen einen Weg zu deren systematischer Nutzung in der medizinischen Chemie.

[1]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[2]  Lionel Colliandre,et al.  e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design , 2012, Bioinform..

[3]  Jean Martínez,et al.  Isoxazolidine: A Privileged Scaffold for Organic and Medicinal Chemistry. , 2016, Chemical reviews.

[4]  Matthew E Welsch,et al.  Privileged scaffolds for library design and drug discovery. , 2010, Current opinion in chemical biology.

[5]  J. Irwin,et al.  An Aggregation Advisor for Ligand Discovery. , 2015, Journal of medicinal chemistry.

[6]  Matthias Wirth,et al.  Bioactive Molecules: Perfectly Shaped for Their Target? , 2011, Molecular informatics.

[7]  Tudor I. Oprea,et al.  Badapple: promiscuity patterns from noisy evidence , 2016, Journal of Cheminformatics.

[8]  G. Rishton Reactive compounds and in vitro false positives in HTS , 1997 .

[9]  S. Manju,et al.  Indoles - A promising scaffold for drug development. , 2016, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[10]  Jayme L. Dahlin,et al.  The essential roles of chemistry in high-throughput screening triage. , 2014, Future medicinal chemistry.

[11]  Jan M. Kriegl,et al.  Form follows function: Shape analysis of protein cavities for receptor‐based drug design , 2009, Proteomics.

[12]  Harren Jhoti,et al.  Twenty years on: the impact of fragments on drug discovery , 2016, Nature Reviews Drug Discovery.

[13]  Brian Hudson,et al.  Strategic Pooling of Compounds for High-Throughput Screening , 1999, J. Chem. Inf. Comput. Sci..

[14]  Jan M. Kriegl,et al.  Architectural Repertoire of Ligand‐Binding Pockets on Protein Surfaces , 2010, Chembiochem : a European journal of chemical biology.

[15]  Sarah R. Langdon,et al.  Scaffold Diversity of Exemplified Medicinal Chemistry Space , 2011, J. Chem. Inf. Model..

[16]  Peng Zhan,et al.  "Old friends in new guise": exploiting privileged structures for scaffold re-evolution/refining. , 2014, Combinatorial chemistry & high throughput screening.

[17]  C. Humblet,et al.  Escape from flatland: increasing saturation as an approach to improving clinical success. , 2009, Journal of medicinal chemistry.

[18]  J. Bajorath,et al.  Charting Biologically Relevant Spirocyclic Compound Space. , 2017, Chemistry.

[19]  J Polanski,et al.  Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. , 2012, Current medicinal chemistry.

[20]  Nathan Brown,et al.  On the origins of three-dimensionality in drug-like molecules. , 2016, Future medicinal chemistry.

[21]  P Schneider,et al.  Spotting and designing promiscuous ligands for drug discovery. , 2016, Chemical communications.

[22]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[23]  J. Baell,et al.  Chemistry: Chemical con artists foil drug discovery , 2014, Nature.

[24]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[25]  J. Bajorath,et al.  Compound promiscuity: what can we learn from current data? , 2013, Drug discovery today.

[26]  Andrew R. Leach,et al.  Molecular Complexity and Its Impact on the Probability of Finding Leads for Drug Discovery , 2001, J. Chem. Inf. Comput. Sci..

[27]  Ronald J. Quinn,et al.  Capturing Nature's Diversity , 2015, PloS one.

[28]  Gerhard Klebe,et al.  Cavities Tell More than Sequences: Exploring Functional Relationships of Proteases via Binding Pockets , 2013, J. Chem. Inf. Model..

[29]  R. Desimone,et al.  Privileged structures: applications in drug discovery. , 2004, Combinatorial chemistry & high throughput screening.

[30]  Bing Xiong,et al.  ScafBank: a public comprehensive Scaffold database to support molecular hopping , 2009, Acta Pharmacologica Sinica.

[31]  George Papadatos,et al.  Activity, assay and target data curation and quality in the ChEMBL database , 2015, Journal of Computer-Aided Molecular Design.

[32]  Petra Schneider,et al.  Counting on natural products for drug design. , 2016, Nature chemistry.

[33]  R. Abagyan,et al.  The flexible pocketome engine for structural chemogenomics. , 2009, Methods in molecular biology.

[34]  B. Shoichet,et al.  Identification and prediction of promiscuous aggregating inhibitors among known drugs. , 2003, Journal of medicinal chemistry.

[35]  O. Silakari,et al.  Benzimidazoles: an ideal privileged drug scaffold for the design of multitargeted anti-inflammatory ligands. , 2014, Mini reviews in medicinal chemistry.

[36]  E. Barreiro,et al.  From nature to drug discovery: the indole scaffold as a 'privileged structure'. , 2009, Mini reviews in medicinal chemistry.

[37]  J. Bajorath,et al.  Systematic analysis of public domain compound potency data identifies selective molecular scaffolds across druggable target families. , 2010, Journal of medicinal chemistry.

[38]  Jürgen Bajorath,et al.  Analyzing Promiscuity at the Level of Active Compounds and Targets , 2016, Molecular informatics.

[39]  Nathan Brown,et al.  Fragment-based hit identification: thinking in 3D. , 2013, Drug discovery today.

[40]  Hongyu Zhao,et al.  Privileged scaffolds in lead generation , 2015, Expert opinion on drug discovery.

[41]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[42]  A Ganesan,et al.  Natural products and combinatorial chemistry: back to the future. , 2004, Current opinion in chemical biology.

[43]  Wolfgang Guba,et al.  Development of a virtual screening method for identification of "frequent hitters" in compound libraries. , 2002, Journal of medicinal chemistry.

[44]  T. Snape,et al.  2-Arylindoles: a privileged molecular scaffold with potent, broad-ranging pharmacological activity. , 2012, Current medicinal chemistry.

[45]  Joanna L. Sharman,et al.  The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands , 2015, Nucleic Acids Res..

[46]  B. E. Evans,et al.  Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. , 1988, Journal of Medicinal Chemistry.

[47]  José L. Medina-Franco,et al.  Scaffold Diversity Analysis of Compound Data Sets Using an Entropy-Based Measure , 2009 .

[48]  A. Carotti,et al.  N-Aryl-5-aminopyrazole: a versatile architecture in medicinal chemistry. , 2015, Mini reviews in medicinal chemistry.

[49]  Yu Ding,et al.  Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors. , 2013, ACS medicinal chemistry letters.

[50]  W. Patrick Walters,et al.  A guide to drug discovery: Designing screens: how to make your hits a hit , 2003, Nature Reviews Drug Discovery.

[51]  J Willem M Nissink,et al.  Quantification of frequent-hitter behavior based on historical high-throughput screening data. , 2014, Future medicinal chemistry.