Conformal blocks on smoothings via mode transition algebras

Here we define a series of associative algebras attached to a vertex operator algebra $V$, called mode transition algebras, showing they reflect both algebraic properties of $V$ and geometric constructions on moduli of curves. One can define sheaves of coinvariants on pointed coordinatized curves from $V$-modules. We show that if the mode transition algebras admit multiplicative identities with certain properties, these sheaves deform as wanted on families of curves with nodes (so $V$ satisfies smoothing). Consequently, coherent sheaves of coinvariants defined by vertex operator algebras that satisfy smoothing form vector bundles. We also show that mode transition algebras give information about higher level Zhu algebras and generalized Verma modules. As an application, we completely describe higher level Zhu algebras of the Heisenberg vertex algebra for all levels, proving a conjecture of Addabbo--Barron.

[1]  Yi-Zhi Huang Modular invariance of (logarithmic) intertwining operators , 2023, 2305.15152.

[2]  A. Gibney,et al.  Factorization presentations , 2022, 2207.05110.

[3]  K. Barron,et al.  The level two Zhu algebra for the Heisenberg vertex operator algebra , 2022, Springer INdAM Series.

[4]  Yi-Zhi Huang Associative Algebras and Intertwining Operators , 2021, Communications in Mathematical Physics.

[5]  K. Barron,et al.  On generators and relations for higher level Zhu algebras and applications , 2021, Journal of Algebra.

[6]  Yi-Zhi Huang Associative algebras and the representation theory of grading-restricted vertex algebras , 2020, 2009.00262.

[7]  Nicola Tarasca,et al.  Vertex algebras of CohFT-type , 2019, 1910.01658.

[8]  Nicola Tarasca,et al.  On factorization and vector bundles of conformal blocks from vertex algebras , 2019, 1909.04683.

[9]  Library Footscray Nicholson Level 1 , 2019, The Innovation Pyramid.

[10]  Nicola Tarasca,et al.  CONFORMAL BLOCKS FROM VERTEX ALGEBRAS AND THEIR CONNECTIONS ON Mg,n , 2019 .

[11]  G. Codogni Vertex algebras and Teichm\"{u}ller modular forms. , 2019, 1901.03079.

[12]  Xiao He Higher level Zhu algebras are subquotients of universal enveloping algebras , 2017, 1712.05671.

[13]  N. V. Werf,et al.  Higher level Zhu algebras and modules for vertex operator algebras , 2017, Journal of Pure and Applied Algebra.

[14]  T. Creutzig,et al.  Simple current extensions beyond semi-simplicity , 2015, Communications in Contemporary Mathematics.

[15]  R. Pandharipande,et al.  The Chern character of the Verlinde bundle over ℳ¯ g,n , 2015 .

[16]  S. Wood,et al.  The tensor structure on the representation category of the Wp?> triplet algebra , 2012, 1201.0419.

[17]  Noah Giansiracusa,et al.  The cone of type A, level one conformal blocks divisors , 2011, 1105.3139.

[18]  Lin Zhang,et al.  Logarithmic Tensor Category Theory for Generalized Modules for a Conformal Vertex Algebra, I: Introduction and Strongly Graded Algebras and their Generalized Modules , 2010, 1012.4193.

[19]  Dražen Adamović,et al.  The structure of Zhu's algebras for certain W-algebras , 2010, 1006.5134.

[20]  Dražen Adamović,et al.  On W-algebras associated to (2,p) minimal models and their representations , 2009, 0908.4053.

[21]  E. Frenkel Langlands Correspondence for Loop Groups , 2007 .

[22]  Dražen Adamović,et al.  Logarithmic intertwining operators and W(2,2p−1) algebras , 2007, math/0702081.

[23]  James McKernan,et al.  Existence of minimal models for varieties of log general type , 2006, 0808.1929.

[24]  A. Milas Logarithmic Intertwining Operators and Vertex Operators , 2006, math/0609306.

[25]  G. Farkas Koszul divisors on moduli spaces of curves , 2006, math/0607475.

[26]  B. Feigin,et al.  Logarithmic extensions of minimal models: characters and modular transformations. , 2006, hep-th/0606196.

[27]  C. Dong,et al.  Bimodules associated to vertex operator algebras , 2006, math/0601626.

[28]  A. Matsuo,et al.  Quasi-finite algebras graded by Hamiltonian and vertex operator algebras , 2005, math/0505071.

[29]  Lin Zhang,et al.  A LOGARITHMIC GENERALIZATION OF TENSOR PRODUCT THEORY FOR MODULES FOR A VERTEX OPERATOR ALGEBRA , 2003, math/0311235.

[30]  M. Miyamoto Modular invariance of vertex operator algebras satisfying $C_{2}$-cofiniteness , 2002, math/0209101.

[31]  A. Tsuchiya,et al.  Conformal field theories associated to regular chiral vertex operator algebras, I: Theories over the projective line , 2002, math/0206223.

[32]  G. Buhl A spanning set for VOA modules , 2001, math/0111296.

[33]  M. Gaberdiel,et al.  Rationality, Quasirationality and Finite W-Algebras , 2000, hep-th/0009235.

[34]  E. Frenkel,et al.  Vertex Algebras and Algebraic Curves , 2000, math/0007054.

[35]  A. Vainshtein,et al.  Hurwitz numbers and intersections on moduli spaces of curves , 2000, math/0004096.

[36]  C. Dong,et al.  Vertex Operator Algebras and Associative Algebras , 1996, q-alg/9612010.

[37]  C. Dong,et al.  Regularity of Rational Vertex Operator Algebras , 1995, q-alg/9508018.

[38]  Haisheng Li Representation theory and tensor product theory for vertex operator algebras , 1994, hep-th/9406211.

[39]  Haisheng Li Local systems of vertex operators, vertex superalgebras and modules , 1994, hep-th/9406185.

[40]  D. Eisenbud,et al.  The Kodaira dimension of the moduli space of curves of genus ≧23 , 1987 .

[41]  D. Mumford,et al.  On the Kodaira dimension of the moduli space of curves , 1982 .

[42]  A. Scott,et al.  Ann Arbor , 1980 .

[43]  T. Willmore Algebraic Geometry , 1973, Nature.

[44]  Notices , 1925, Neuropeptides.

[45]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[46]  N. V. Werf,et al.  The level one Zhu algebra for the Virasoro vertex operator algebra , 2020 .

[47]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[48]  Yongchang Zhu,et al.  Modular invariance of characters of vertex operator algebras , 1995 .

[49]  James Lepowsky,et al.  Generalized vertex algebras and relative vertex operators , 1993 .

[50]  Weiqiang Wang Rationality of Virasoro vertex operator algebras , 1993 .

[51]  K. Ueno,et al.  Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries , 1989 .

[52]  David Mumford,et al.  Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .

[53]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .