Maximizing Coordination Capsule-Guest Polar Interactions in Apolar Solvents Reveals Significant Binding.

Guest encapsulation underpins the functional properties of self-assembled capsules yet identifying systems capable of strongly binding small organic molecules in solution remains a challenge. Most coordination capsules rely on the hydrophobic effect to ensure effective solution-phase association. In contrast, we show that using non-interacting anions in apolar solvents can maximize favorable interactions between a cationic Pd2 L4 host and charge-neutral guests resulting in a dramatic increase in binding strength. With quinone-type guests, association constants in excess of 108  m-1 were observed, comparable to the highest previously recorded constant for a metallosupramolecular capsule. Modulation of optoelectronic properties of the guests was also observed, with encapsulation either changing or switching-on luminescence not present in the bulk phase.

[1]  D. Schwarzer,et al.  Desymmetrization of an Octahedral Coordination Complex Inside a Self-Assembled Exoskeleton. , 2016, Chemistry.

[2]  O. Wiest,et al.  Metal-Templated Design: Enantioselective Hydrogen-Bond-Driven Catalysis Requiring Only Parts-per-Million Catalyst Loading. , 2016, Journal of the American Chemical Society.

[3]  C. Hunter,et al.  Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. , 2016, Nature chemistry.

[4]  M. Yoshizawa,et al.  A fluorescent molecular capsule with a flexible polyaromatic shell for the detection of monoterpene compounds in water. , 2016, Chemical communications.

[5]  P. Mukherjee,et al.  Urea-Functionalized Self-Assembled Molecular Prism for Heterogeneous Catalysis in Water. , 2016, Journal of the American Chemical Society.

[6]  S. Kass,et al.  Electrostatically Enhanced Thioureas. , 2016, Organic letters.

[7]  K. Maruoka,et al.  Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts. , 2015, Angewandte Chemie.

[8]  David M. Kaphan,et al.  A supramolecular microenvironment strategy for transition metal catalysis , 2015, Science.

[9]  S. Cockroft,et al.  Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions. , 2015, Journal of the American Chemical Society.

[10]  M. Sartin,et al.  Preparation of Highly Fluorescent Host-Guest Complexes with Tunable Color upon Encapsulation. , 2015, Journal of the American Chemical Society.

[11]  Peter D. Frischmann,et al.  Bright Fluorescence and Host-Guest Sensing with a Nanoscale M₄L₆ Tetrahedron Accessed by Self-Assembly of Zinc-Imine Chelate Vertices and Perylene Bisimide Edges. , 2015, Angewandte Chemie.

[12]  Sorin V Filip,et al.  Aromatic donor-acceptor interactions in non-polar environments. , 2015, Chemical communications.

[13]  H. Schneider,et al.  Neues zum hydrophoben Effekt – Studien mit supramolekularen Komplexen zeigen hochenergetisches Wasser als nichtkovalente Bindungstriebkraft , 2014 .

[14]  Hans-Jörg Schneider,et al.  The hydrophobic effect revisited--studies with supramolecular complexes imply high-energy water as a noncovalent driving force. , 2014, Angewandte Chemie.

[15]  Tanya K. Ronson,et al.  Solvent effects upon guest binding and dynamics of a Fe(II)4L4 cage. , 2014, Journal of the American Chemical Society.

[16]  A. Casini,et al.  Self-assembled M2L4 coordination cages: Synthesis and potential applications , 2014 .

[17]  M. Yoshizawa,et al.  Safe storage of radical initiators within a polyaromatic nanocapsule , 2014, Nature Communications.

[18]  C. Hunter,et al.  Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries. , 2014, Journal of the American Chemical Society.

[19]  James E. M. Lewis,et al.  Exo- and endo-hedral interactions of counteranions with tetracationic Pd2L4 metallosupramolecular architectures , 2014 .

[20]  G. Clever,et al.  Self-assembled coordination cages based on banana-shaped ligands. , 2014, Chemical Society reviews.

[21]  J. Nitschke,et al.  Fluorophore incorporation allows nanomolar guest sensing and white-light emission in M4L6 cage complexes , 2014 .

[22]  C. Hunter,et al.  Fac and mer isomers of Ru(II) tris(pyrazolyl-pyridine) complexes as models for the vertices of coordination cages: structural characterisation and hydrogen-bonding characteristics. , 2014, Dalton transactions.

[23]  R. Turner,et al.  A self-organizing chemical assembly line. , 2013, Journal of the American Chemical Society.

[24]  Takashi Nakamura,et al.  Silver-mediated formation of a cofacial porphyrin dimer with the ability to intercalate aromatic molecules. , 2013, Angewandte Chemie.

[25]  C. Hunter,et al.  Quantification of solvent effects on molecular recognition in polyhedral coordination cage hosts , 2013 .

[26]  J. Siegel,et al.  Wide-ranging host capability of a Pd(II)-linked M2L4 molecular capsule with an anthracene shell. , 2013, Chemistry.

[27]  Anita C Jones,et al.  Luminescent, enantiopure, phenylatopyridine iridium-based coordination capsules. , 2012, Journal of the American Chemical Society.

[28]  Pengyan Wu,et al.  Fluorescent differentiation and quantificational detection of free tryptophan in serum within a confined metal-organic tetrahedron. , 2012, Chemical communications.

[29]  Maarten M. J. Smulders,et al.  Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co10L15 pentagonal prism. , 2012, Nature chemistry.

[30]  Sabrina Freye,et al.  Allosterische Bindung von Halogenidionen durch ein neuartiges Dimer aus interpenetrierenden Koordinationskäfigen , 2012 .

[31]  D. Stalke,et al.  Allosteric binding of halide anions by a new dimeric interpenetrated coordination cage. , 2012, Angewandte Chemie.

[32]  James E. M. Lewis,et al.  Stimuli-responsive Pd2L4metallosupramolecular cages: towards targeted cisplatin drug delivery , 2012 .

[33]  L. Juillerat-Jeanneret,et al.  Organometallic cages as vehicles for intracellular release of photosensitizers. , 2012, Journal of the American Chemical Society.

[34]  M. Fujita,et al.  Cage-catalyzed Knoevenagel condensation under neutral conditions in water. , 2012, Journal of the American Chemical Society.

[35]  M. Fujita,et al.  Noncovalent trapping and stabilization of dinuclear ruthenium complexes within a coordination cage. , 2011, Journal of the American Chemical Society.

[36]  Maarten M. J. Smulders,et al.  Selective anion binding by a “Chameleon” capsule with a dynamically reconfigurable exterior , 2011 .

[37]  John C. McMurtrie,et al.  Unprecedented encapsulation of a [FeIIICl4]− anion in a cationic [FeII4L6]8+ tetrahedral cage derived from 5,5′′′-dimethyl-2,2′:5′,5′′:2′′,2′′′-quaterpyridine , 2011 .

[38]  F. Tham,et al.  Two-component control of guest binding in a self-assembled cage molecule. , 2010, Chemical communications.

[39]  G. Clever,et al.  Inclusion of anionic guests inside a molecular cage with palladium(II) centers as electrostatic anchors. , 2009, Angewandte Chemie.

[40]  M. Fujita,et al.  ON/OFF red emission from azaporphine in a coordination cage in water. , 2009, Journal of the American Chemical Society.

[41]  K. Rissanen,et al.  White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule , 2009, Science.

[42]  K. Rissanen,et al.  An unlockable-relockable iron cage by subcomponent self-assembly. , 2008, Angewandte Chemie.

[43]  Shannon M. Biros,et al.  The hydrophobic effect drives the recognition of hydrocarbons by an anionic metal-ligand cluster. , 2007, Journal of the American Chemical Society.

[44]  J. Rebek,et al.  Stabilization of Labile Carbonyl Addition Intermediates by a Synthetic Receptor , 2007, Science.

[45]  C. Hunter,et al.  Desolvation tips the balance: solvent effects on aromatic interactions. , 2006, Chemical communications.

[46]  M. Fujita,et al.  Encapsulation of Large, Neutral Molecules in a Self-Assembled Nanocage Incorporating Six Palladium(II) Ions. , 1998, Angewandte Chemie.

[47]  Makoto Fujita,et al.  Einlagerung von großen, neutralen Molekülen in einem durch Selbstorganisation gebildeten Nanokäfig, der sechs PdII-Ionen enthält , 1998 .

[48]  K. Raymond,et al.  The Self‐Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster , 1998 .

[49]  Kenneth N. Raymond,et al.  Selbstorganisation eines supramolekularen tetraedrischen M4L6‐Clusters , 1998 .

[50]  M. Ward,et al.  Anion-Templated Assembly of a Supramolecular Cage Complex. , 1998, Angewandte Chemie.

[51]  James S. Fleming,et al.  ANIONENGESTEUERTER AUFBAU EINES SUPRAMOLEKULAREN KAFIGKOMPLEXES , 1998 .

[52]  C. Hunter,et al.  Amide–aromatic hydrogen-bonds in host–guest recognition , 1996 .

[53]  M. Fujita,et al.  Self-assembly of ten molecules into nanometre-sized organic host frameworks , 1995, Nature.