Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development

[1]  J. Qu,et al.  Temporal-Spatial Resolution Fate Mapping Reveals Distinct Origins for Embryonic and Adult Microglia in Zebrafish. , 2015, Developmental cell.

[2]  B. Evavold,et al.  Identification of T cell clones without the need for sequencing. , 2015, Journal of immunological methods.

[3]  L. Zon,et al.  Chamber identity programs drive early functional partitioning of the heart , 2015, Nature Communications.

[4]  B. Ebert,et al.  Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. , 2015, Blood.

[5]  Yi Zhou,et al.  A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. , 2015, Developmental cell.

[6]  Tim Holland-Letz,et al.  Fundamental properties of unperturbed haematopoiesis from stem cells in vivo , 2015, Nature.

[7]  Tamily A Weissman,et al.  Brainbow: New Resources and Emerging Biological Applications for Multicolor Genetic Labeling and Analysis , 2015, Genetics.

[8]  L. Zon,et al.  Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche , 2015, Cell.

[9]  Allon M. Klein,et al.  Clonal dynamics of native haematopoiesis , 2014, Nature.

[10]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[11]  Samantha Ross,et al.  Effect of developmental stage of HSC and recipient on transplant outcomes. , 2014, Developmental cell.

[12]  A. Presson,et al.  Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study. , 2014, Cell stem cell.

[13]  Thomas J. Hudson,et al.  Corrigendum: Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia , 2014, Nature.

[14]  Yann Le Franc,et al.  Multiplex Cell and Lineage Tracking with Combinatorial Labels , 2014, Neuron.

[15]  T. Weissman,et al.  Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish , 2013, Development.

[16]  N. Iwanami,et al.  Zebrafish model for allogeneic hematopoietic cell transplantation not requiring preconditioning , 2013, Proceedings of the National Academy of Sciences.

[17]  S. Renshaw,et al.  A Method for the In Vivo Measurement of Zebrafish Tissue Neutrophil Lifespan , 2012, ISRN hematology.

[18]  K. Poss,et al.  Clonally dominant cardiomyocytes direct heart morphogenesis , 2012, Nature.

[19]  Irving L. Weissman,et al.  Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding , 2011, Nature Biotechnology.

[20]  P. Guttorp,et al.  The replication rate of human hematopoietic stem cells in vivo. , 2011, Blood.

[21]  J. Kaslin,et al.  Generation of a non‐leaky heat shock–inducible Cre line for conditional Cre/lox strategies in zebrafish , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[22]  L. Zon,et al.  Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish , 2011, Development.

[23]  J. Italiano,et al.  The identification and characterization of zebrafish hematopoietic stem cells. , 2006, Blood.

[24]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[25]  K. Kissa,et al.  Blood stem cells emerge from aortic endothelium by a novel type of cell transition , 2010, Nature.

[26]  N. Galjart,et al.  In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium , 2010, Nature.

[27]  D. Stainier,et al.  Hematopoietic stem cells derive directly from aortic endothelium during development , 2009, Nature.

[28]  Elaine Dzierzak,et al.  Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter , 2009, Nature.

[29]  Michael S. Becker,et al.  Fate tracing reveals the endothelial origin of hematopoietic stem cells. , 2008, Cell stem cell.

[30]  D. Traver,et al.  CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis , 2008, Development.

[31]  K. Kissa,et al.  Live imaging of emerging hematopoietic stem cells and early thymus colonization. , 2008, Blood.

[32]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[33]  B. Paw,et al.  Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. , 2005, Blood.

[34]  Leonard I Zon,et al.  Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants , 2003, Nature Immunology.

[35]  A. M. Morrison,et al.  Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. , 2002, Development.

[36]  R. Herbst,et al.  Quantitative developmental anatomy of definitive haematopoietic stem cells / long-term repopulating units ( HSC / RUs ) : role of the aorta-gonad-mesonephros ( AGM ) region and the yolk sac in colonisation of the mouse embryonic liver , 2002 .

[37]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[38]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[39]  I. Lemischka,et al.  Clonal and systemic analysis of long-term hematopoiesis in the mouse. , 1990, Genes & development.