Validating a quasi-linear transport model versus nonlinear simulations

In order to gain reliable predictions on turbulent fluxes in tokamak plasmas, physics based transport models are required. Nonlinear gyrokinetic electromagnetic simulations for all species are still too costly in terms of computing time. On the other hand, interestingly, the quasi-linear approximation seems to retain the relevant physics for fairly reproducing both experimental results and nonlinear gyrokinetic simulations. Quasi-linear fluxes are made of two parts: (1) the quasi-linear response of the transported quantities and (2) the saturated fluctuating electrostatic potential. The first one is shown to follow well nonlinear numerical predictions; the second one is based on both nonlinear simulations and turbulence measurements. The resulting quasi-linear fluxes computed by QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501) are shown to agree with the nonlinear predictions when varying various dimensionless parameters, such as the temperature gradients, the ion to electron temperature ratio, the dimensionless collisionality, the effective charge and ranging from ion temperature gradient to trapped electron modes turbulence.

[1]  R. Sagdeev,et al.  Nonlinear oscillations of rarified plasma , 1961 .

[2]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[3]  T. H. Dupree A Perturbation Theory for Strong Plasma Turbulence , 1966 .

[4]  Steven A. Orszag,et al.  MODEL EQUATIONS FOR STRONG TURBULENCE IN A VLASOV PLASMA. , 1967 .

[5]  T. H. Dupree Nonlinear Theory of Low‐Frequency Instabilities , 1968 .

[6]  J. Weinstock Formulation of a Statistical Theory of Strong Plasma Turbulence , 1969 .

[7]  J. Weinstock Turbulent Plasmas in a Magnetic Field—A Statistical Theory , 1970 .

[8]  M. Ottaviani Scaling Laws of Test Particle Transport in Two-Dimensional Turbulence , 1992 .

[9]  William Dorland,et al.  Quantitative predictions of tokamak energy confinement from first‐principles simulations with kinetic effects , 1995 .

[10]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[11]  Arnold H. Kritz,et al.  Predicting temperature and density profiles in tokamaks , 1998 .

[12]  G. Laval,et al.  Controversies about quasi-linear theory , 1999 .

[13]  Temporal separation of the density fluctuation signal measured by light scattering , 1999 .

[14]  J. Kinsey,et al.  Non-dimensional scaling of turbulence characteristics and turbulent diffusivity , 2001 .

[15]  C. Bourdelle,et al.  Stability analysis of improved confinement discharges: internal transport barriers in Tore Supra and radiative improved mode in TEXTOR , 2002 .

[16]  Microscopic Dynamics of Plasmas and Chaos , 2002 .

[17]  F. Imbeaux,et al.  Simulations of steady-state scenarios for Tore Supra using the CRONOS code , 2003 .

[18]  R. Waltz,et al.  Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation. , 2003, Physical review letters.

[19]  X. Garbet,et al.  Scaling laws of density fluctuations at high-k on Tore Supra , 2004 .

[20]  R. E. Waltz,et al.  Gyro-Landau fluid equations for trapped and passing particles , 2005 .

[21]  On q dependence of thermal transport in tokamaks , 2005 .

[22]  F. Jenko,et al.  Gyrokinetic simulation of collisionless trapped-electron mode turbulence , 2005 .

[23]  Frank Jenko,et al.  Collisionality dependence of density peaking in quasilinear gyrokinetic calculations , 2005 .

[24]  Frank Jenko,et al.  Heat and particle transport in a tokamak: advances in nonlinear gyrokinetics , 2005 .

[25]  R Balesc,et al.  Aspects of anomalous transport in plasmas , 2005 .

[26]  J. Kinsey,et al.  A theory-based transport model with comprehensive physicsa) , 2006 .

[27]  Comparison of density fluctuation measurements between O-mode and X-mode reflectometry on Tore Supra , 2006 .

[28]  C. Bourdelle,et al.  Fluctuation spectra and velocity profile from Doppler backscattering on Tore Supra , 2006 .

[29]  F. Imbeaux,et al.  A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas , 2007 .

[30]  X. Garbet,et al.  Global full-f gyrokinetic simulations of plasma turbulence , 2007 .

[31]  Jeff M. Candy,et al.  Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations , 2007 .

[32]  Z. Lin,et al.  Wave-particle decorrelation and transport of anisotropic turbulence in collisionless plasmas. , 2007, Physical review letters.

[33]  C. Bourdelle,et al.  Numerical study of linear dissipative drift electrostatic modes in tokamaks , 2007 .

[34]  F. Jenko,et al.  Scale separation between electron and ion thermal transport. , 2008, Physical review letters.

[35]  T. Fülöp,et al.  Collisionality dependence of the quasilinear particle flux due to microinstabilities , 2008 .

[36]  B. Duval,et al.  35th European Physical Society Conference on plasma physics & 10th International workshop on fast ignition of fusion targets : Hersonissos, Crete, Greece, June 9-13, 2008 , 2008 .

[37]  R. E. Waltz,et al.  The first transport code simulations using the trapped gyro-Landau-fluid model , 2008 .

[38]  P. Diamond,et al.  Wave-number spectrum of drift-wave turbulence. , 2009, Physical review letters.

[39]  W. Dorland,et al.  Role of stable eigenmodes in gyrokinetic models of ion temperature gradient turbulence , 2009 .

[40]  Gyrokinetic simulation tests of quasilinear and tracer transport , 2009 .

[41]  F. Imbeaux,et al.  Turbulence in the TORE SUPRA tokamak: measurements and validation of nonlinear simulations. , 2009, Physical review letters.