Low power, non-coherent sensitized photon up-conversion: modelling and perspectives.

In the last few years, non-coherent sensitized photon up-conversion (SUC) in multi-component systems has been developed to achieve significantly high quantum yields for various chromophore combinations at low excitation powers, spanning from the ultraviolet (UV) to near infrared (NIR) spectrum. This promising photon energy management technique became indeed suitable for wide applications in lighting technology and especially in photovoltaics, being able to recover the sub-bandgap photons lost by current devices. A full and general description of the SUC photophysics will be presented, with the analysis of the parameter affecting the photon conversion quantum yield and the quantities which define the optimal working range of any SUC system, namely the threshold and saturation excitation intensity. It will be shown how these quantities depend on intrinsic photophysical properties of the moieties involved and on the SUC solid host matrix. The model proposed represents a powerful tool for evaluation of a newly proposed system, and its reliability will be discussed in respect to an optimized system with SUC yield of 0.26 ± 0.02. The results obtained will outline the research guidelines which must be pursued to optimize the SUC efficiency for its perspective technological applications.

[1]  David Beljonne,et al.  Intersystem crossing processes in nonplanar aromatic heterocyclic molecules. , 2007, The journal of physical chemistry. A.

[2]  C. Weder,et al.  Influence of temperature on low-power upconversion in rubbery polymer blends. , 2009, Journal of the American Chemical Society.

[3]  Angelo Monguzzi,et al.  Multicomponent polymeric film for red to green low power sensitized up-conversion. , 2009, The journal of physical chemistry. A.

[4]  R. Weisman,et al.  Determination of Triplet Quantum Yields from Triplet−Triplet Annihilation Fluorescence , 2000 .

[5]  S. Tavazzi,et al.  Growth and characterisation of centimetre-sized single crystals of molecular organic materials , 2005 .

[6]  R. Ziessel,et al.  Photoinduced intercomponent processes in multichromophoric species made of Pt(II)-terpyridine-acetylide and dipyrromethene-BF2 subunits. , 2008, Physical chemistry chemical physics : PCCP.

[7]  J. M. Gardner,et al.  Photon Upconversion on Dye-Sensitized Nanostructured ZrO2 Films , 2011 .

[8]  Yuen Yap Cheng,et al.  Entropically driven photochemical upconversion. , 2011, The journal of physical chemistry. A.

[9]  Andrei V. Cheprakov,et al.  Upconversion with ultrabroad excitation band: Simultaneous use of two sensitizers , 2007 .

[10]  Paul W. M. Blom,et al.  Organic Tandem and Multi‐Junction Solar Cells , 2008 .

[11]  Wei Zhao,et al.  Upconverted emission from pyrene and di-tert-butylpyrene using Ir(ppy)3 as triplet sensitizer. , 2006, The journal of physical chemistry. A.

[12]  M. El-Sayed,et al.  The Triplet State and Molecular Electronic Processes in Organic Molecules , 1966 .

[13]  M. Green,et al.  Efficiency enhancement of solar cells by luminescent up-conversion of sunlight , 2006 .

[14]  G. Wegner,et al.  Efficient upconversion fluorescence in a blue-emitting spirobifluorene-anthracene copolymer doped with low concentrations of Pt(II)octaethylporphyrin. , 2005, The Journal of chemical physics.

[15]  M. Inokuti,et al.  Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence , 1965 .

[16]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[17]  A. Penzkofer,et al.  Absorption and emission spectroscopic characterization of platinum-octaethyl-porphyrin (PtOEP) , 2006 .

[18]  Felix N. Castellano,et al.  Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear , 2012 .

[19]  Matthew F. Paige,et al.  Mechanisms of low-power noncoherent photon upconversion in metalloporphyrin-organic blue emitter systems in solution. , 2009, The journal of physical chemistry. A.

[20]  A. McLean,et al.  Faraday communications. Efficiency of triplet-photosensitised singlet oxygen generation in benzene , 1990 .

[21]  Raymond Ziessel,et al.  Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. , 2008, Journal of the American Chemical Society.

[22]  F. Castellano,et al.  Photochemical upconversion approach to broad-band visible light generation. , 2008, The journal of physical chemistry. A.

[23]  W. Helfrich,et al.  Transients of Volume‐Controlled Current and of Recombination Radiation in Anthracene , 1966 .

[24]  Maxwell J. Crossley,et al.  Kinetic Analysis of Photochemical Upconversion by Triplet−Triplet Annihilation: Beyond Any Spin Statistical Limit , 2010 .

[25]  C. Ting Electronic structure and intersystem crossing in 9,10-diphenylanthracene , 1967 .

[26]  G. Wegner,et al.  Up-conversion fluorescence: noncoherent excitation by sunlight. , 2006, Physical review letters.

[27]  Murad J Y Tayebjee,et al.  On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. , 2010, Physical chemistry chemical physics : PCCP.

[28]  S. Rice,et al.  Triplet Energy Transfer and Triplet-Triplet Interaction in Aromatic Crystals , 1963 .

[29]  V. May Beyond the Förster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems. , 2009, Dalton transactions.

[30]  S. Kobayashi,et al.  Fluorescence of the antharacenes following Tn → T1 excitation studied by a double excitation method , 1976 .

[31]  Alexandre Haefele,et al.  Upconversion-powered photoelectrochemistry. , 2012, Chemical communications.

[32]  David Beljonne,et al.  Spin-Orbit Coupling and Intersystem Crossing in Conjugated Polymers: A Configuration Interaction Description , 2001 .

[33]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[34]  F. Castellano,et al.  Photochemical upconversion: anthracene dimerization sensitized to visible light by a RuII chromophore. , 2006, Angewandte Chemie.

[35]  F. Castellano,et al.  Triplet Sensitized Red-to-Blue Photon Upconversion , 2010 .

[36]  R. Tubino,et al.  Effect of an external magnetic field on the up-conversion photoluminescence of organic films: the role of disorder in triplet-triplet annihilation. , 2009, Physical review letters.

[37]  Stephen R. Forrest,et al.  White Organic Light‐Emitting Devices for Solid‐State Lighting , 2004 .

[38]  Felix N. Castellano,et al.  Photon upconversion based on sensitized triplet-triplet annihilation , 2010 .

[39]  Dmitri B. Papkovsky,et al.  Emerging Applications of Phosphorescent Metalloporphyrins , 2005, Journal of Fluorescence.

[40]  Kelly G. Casey,et al.  Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols , 1988 .

[41]  A. Sassella,et al.  Control of π−π Interactions in Epitaxial Films of Platinum(II) Octaethyl Porphyrin† , 2011 .

[42]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[43]  Stanislav Baluschev,et al.  Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin. , 2008, Chemistry.

[44]  L. Stryer,et al.  Diffusion-enhanced fluorescence energy transfer. , 1982, Annual review of biophysics and bioengineering.

[45]  W.G.J.H.M. van Sark,et al.  Upconverter solar cells: materials and applications , 2011 .

[46]  P. Levin Kinetics of Diffusion-Controlled Triplet–Triplet Annihilation of Porphyrin in Liquid and Frozen Thin Layers of Decanol , 2003 .

[47]  L. Stryer,et al.  Fluorescence energy transfer in the rapid-diffusion limit. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[48]  F. Schreiber,et al.  Real-time observation of oxidation and photo-oxidation of rubrene thin films by spectroscopic ellipsometry , 2007, cond-mat/0703522.

[49]  R. Merrifield,et al.  Singlet and triplet channels for triplet-exciton fusion in anthracene crystals , 1970 .

[50]  Angelo Monguzzi,et al.  Low‐Power‐Photon Up‐Conversion in Dual‐Dye‐Loaded Polymer Nanoparticles , 2012 .

[51]  Anthony Harriman,et al.  The chemistry of fluorescent bodipy dyes: versatility unsurpassed. , 2008, Angewandte Chemie.

[52]  R. Merrifield,et al.  Consequences of Symmetry Breaking in Triplet-Exciton Fusion , 1970 .

[53]  P. E. Keivanidis,et al.  Upconversion photoluminescence in poly(ladder-type-pentaphenylene) doped with metal (II)-octaethyl porphyrins , 2005 .

[54]  H. Jenssen,et al.  Review of the properties of up-conversion phosphors for new emissive displays , 2006, Journal of Display Technology.

[55]  R. Merrifield Magnetic effects on triplet exciton interactions , 1971 .

[56]  W. Fann,et al.  White-light emission from an upconverted emission with an organic triplet sensitizer. , 2009, Chemical communications.

[57]  P. E. Keivanidis,et al.  Up‐Conversion Photoluminescence in Polyfluorene Doped with Metal(II)–Octaethyl Porphyrins , 2003 .

[58]  Shaomin Ji,et al.  Ruthenium(II) polyimine complexes with a long-lived 3IL excited state or a 3MLCT/3 IL equilibrium: efficient triplet sensitizers for low-power upconversion. , 2011, Angewandte Chemie.

[59]  Francesco Scotognella,et al.  Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold , 2008 .

[60]  R. Merrifield,et al.  Experimental Determination of the Diffusion Length of Triplet Excitons in Anthracene Crystals , 1964 .

[61]  J. Morris,et al.  Temperature dependence of radiationless processes. Isoquinoline in solution , 1976 .

[62]  E. V. Meerwall,et al.  Comparison of various measurements of microscopic friction in polymer solutions , 1993 .

[63]  J. Lindsey,et al.  PhotochemCAD ‡ : A Computer‐Aided Design and Research Tool in Photochemistry , 1998 .

[64]  R. Tubino,et al.  White light generation by sensitized photon up-conversion , 2012 .

[65]  Angelo Monguzzi,et al.  Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems , 2010 .

[66]  Akio Yasuda,et al.  Blue-green up-conversion: noncoherent excitation by NIR light. , 2007, Angewandte Chemie.

[67]  Martin Gouterman,et al.  Spectra of porphyrins , 1961 .

[68]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[69]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[70]  J. Pflaum,et al.  Growth and Electronic Transport in 9,10‐Diphenylanthracene Single Crystals—An Organic Semiconductor of High Electron and Hole Mobility , 2007 .

[71]  R. Dabestani,et al.  Role of triplet-triplet annihilation in anthracene dimerization , 1983 .

[72]  Angelo Monguzzi,et al.  Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer , 2008 .

[73]  Hajime Haneda,et al.  Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies , 2005 .

[74]  S. Baluschev,et al.  Annihilation assisted upconversion: all-organic, flexible and transparent multicolour display , 2008 .

[75]  A. Monkman,et al.  The role of exciton diffusion in energy transfer between polyfluorene and tetraphenyl porphyrin , 2005 .

[76]  R. Macfarlane,et al.  A Three-Color, Solid-State, Three-Dimensional Display , 1996, Science.

[77]  H. Bässler,et al.  Triplet states in organic semiconductors , 2009 .

[78]  Joseph P. Dinnocenzo,et al.  Low-power green-to-blue and blue-to-UV upconversion in rigid polymer films , 2009 .

[79]  A. Speghini,et al.  Bright white upconversion emission from Tm3+/Yb3+/Er3+ doped Lu3Ga5O12 nanocrystals , 2008 .

[80]  M. F. Paige,et al.  Efficient S2 state production in ZnTPP–PMMA thin films by triplet–triplet annihilation: Evidence of solute aggregation in photon upconversion systems , 2009 .

[81]  Christoph Weder,et al.  Noncoherent low-power upconversion in solid polymer films. , 2007, Journal of the American Chemical Society.

[82]  U. Gösele,et al.  Diffusion and long-range energy transfer , 1975 .

[83]  S. Baluschev,et al.  A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum , 2008 .

[84]  P. Hanhela,et al.  Evaluation of fluorescent materials for colour control of peroxylate chemiluminescence. IV. Fluorescence quantum yields of some phenyl and phenylethynyl aromatic compounds , 1984 .

[85]  X. Y. Huang,et al.  Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response , 2009, Journal of Fluorescence.