Criteria for posterior consistency

Frequentist conditions for asymptotic suitability of Bayesian procedures focus on lower bounds for prior mass in Kullback-Leibler neighbourhoods of the data distribution. The goal of this paper is to investigate the flexibility in criteria for posterior consistency with i.i.d. data. We formulate a versatile posterior consistency theorem that applies both to well- and mis-specified models and which we use to re-derive Schwartz's theorem, consider Kullback-Leibler consistency and formulate consistency theorems in which priors charge metric balls. It is generalized to sieved models with Barron's negligible prior mass condition and to separable models with variations on Walker's consistency theorem. Results also apply to marginal semi-parametric consistency: support boundary estimation is considered explicitly and consistency is proved in a model for which Kullback-Leibler priors do not exist. Other examples include consistent density estimation in mixture models with Dirichlet or Gibbs-type priors of full weak support. Regarding posterior convergence at a rate, it is shown that under a mild integrability condition, the second-order Ghosal-Ghosh-van der Vaart prior mass condition can be relaxed to a lower bound to the prior mass in Schwartz's Kullback-Leibler neighbourhoods. The posterior rate of convergence is derived in a simple, parametric model for heavy-tailed distributions in which the Ghosal-Ghosh-van der Vaart condition cannot be satisfied by any prior.

[1]  P. Bickel,et al.  The semiparametric Bernstein-von Mises theorem , 2010, 1007.0179.

[2]  Albert Y. Lo,et al.  Bayes Methods for a Symmetric Unimodal Density and its Mode , 1989 .

[3]  B. Kleijn,et al.  Bayesian asymptotics under misspecification , 2004 .

[4]  I. Castillo On Bayesian supremum norm contraction rates , 2013, 1304.1761.

[5]  K. Matusita,et al.  Some properties of affinity and applications , 1971 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  L. Wasserman,et al.  The consistency of posterior distributions in nonparametric problems , 1999 .

[8]  D. Freedman On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .

[9]  L. Schwartz On Bayes procedures , 1965 .

[10]  W. Wong,et al.  Probability inequalities for likelihood ratios and convergence rates of sieve MLEs , 1995 .

[11]  Judith Rousseau,et al.  On adaptive posterior concentration rates , 2013, 1305.5270.

[12]  Semiparametric posterior limits under local asymptotic exponentiality , 2012, 1210.6204.

[13]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[14]  S. Walker New approaches to Bayesian consistency , 2004, math/0503672.

[15]  L. Cam Asymptotic Normality of Experiments , 2006 .

[16]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[17]  Richard Nickl,et al.  Rates of contraction for posterior distributions in Lr-metrics, 1 ≤ r ≤ ∞ , 2011, 1203.2043.

[18]  L. Wasserman,et al.  Rates of convergence of posterior distributions , 2001 .

[19]  B. J. K. Kleijn,et al.  The Bayesian analysis of complex, high-dimensional models: Can it be CODA? , 2012, 1203.5471.

[20]  Jayanta K. Ghosh,et al.  Non-informative priors via sieves and packing numbers , 1997 .

[21]  K. Matusita On the notion of affinity of several distributions and some of its applications , 1967 .

[22]  A. Lijoi,et al.  AN ASYMPTOTIC ANALYSIS OF A CLASS OF DISCRETE NONPARAMETRIC PRIORS , 2013 .

[23]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[24]  L Schwartz,et al.  ON CONSISTENCY OF BAYES PROCEDURES. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. V. D. Vaart,et al.  Misspecification in infinite-dimensional Bayesian statistics , 2006, math/0607023.

[26]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[27]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[28]  S. Walker,et al.  Data tracking and the understanding of Bayesian consistency , 2005 .

[29]  J. Ghosh,et al.  POSTERIOR CONSISTENCY OF DIRICHLET MIXTURES IN DENSITY ESTIMATION , 1999 .

[30]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[31]  Tom Leonard Density Estimation, Stochastic Processes and Prior Information , 1978 .

[32]  Godfried T. Toussaint,et al.  Some properties of Matusita's measure of affinity of several distributions , 1974 .

[33]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .

[34]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[35]  Van Der Vaart,et al.  The Bernstein-Von-Mises theorem under misspecification , 2012 .