Scaling up real networks by geometric branching growth

Real networks often grow through the sequential addition of new nodes that connect to older ones in the graph. However, many real systems evolve through the branching of fundamental units, whether those be scientific fields, countries, or species. Here, we provide empirical evidence for self-similar growth of network structure in the evolution of real systems and present the Geometric Branching Growth model, which predicts this evolution and explains the symmetries observed. The model produces multiscale unfolding of a network in a sequence of scaled-up replicas preserving network features, including clustering and community structure, at all scales. Practical applications in real instances include the tuning of network size for best response to external influence and finite-size scaling to assess critical behavior under random link failures.

[1]  M. Serrano,et al.  Multiscale unfolding of real networks by geometric renormalization , 2017, Nature Physics.

[2]  Antoine Allard,et al.  Geometric renormalization unravels self-similarity of the multiscale human connectome , 2019, Proceedings of the National Academy of Sciences.

[3]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[4]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[5]  D. Zanette,et al.  Stochastic resonance in a model of opinion formation on small-world networks , 2001, cond-mat/0111289.

[6]  J. P. Nolan Univariate Stable Distributions , 2020 .

[7]  Claudio Castellano,et al.  Universality of citation distributions: Toward an objective measure of scientific impact , 2008, Proceedings of the National Academy of Sciences.

[8]  Ricard V. Solé,et al.  A Model of Large-Scale proteome Evolution , 2002, Adv. Complex Syst..

[9]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[10]  Marcos Kiwi,et al.  Spectral Gap of Random Hyperbolic Graphs and Related Parameters , 2016 .

[11]  J. L. Nolan,et al.  Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .

[12]  Marián Boguñá,et al.  Uncovering the hidden geometry behind metabolic networks. , 2011, Molecular bioSystems.

[13]  C. Tessone,et al.  Finite size effects in the dynamics of opinion formation , 2006, physics/0607252.

[14]  Lubos Buzna,et al.  Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks , 2017, Physical review letters.

[15]  Albert-László Barabási,et al.  Quantifying Long-Term Scientific Impact , 2013, Science.

[16]  M. Kateregga,et al.  Parameter estimation for stable distributions with application to commodity futures log-returns , 2017, 1706.09756.

[17]  Francesco Sorrentino,et al.  Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks , 2013, 1309.6605.

[18]  Stasa Milojevic,et al.  Quantifying the cognitive extent of science , 2015, J. Informetrics.

[19]  Ginestra Bianconi,et al.  Competition and multiscaling in evolving networks , 2001 .

[20]  Luca Gugelmann,et al.  Random Hyperbolic Graphs: Degree Sequence and Clustering - (Extended Abstract) , 2012, ICALP.

[21]  Dmitri V. Krioukov,et al.  Network geometry , 2020, Nature Reviews Physics.

[22]  N. A. Dmitriev Branching Random Processes , 1992 .

[23]  Jean-Charles Delvenne,et al.  Structured networks and coarse-grained descriptions: a dynamical perspective , 2018, Advances in Network Clustering and Blockmodeling.

[24]  Peter Hänggi,et al.  Stochastic Nonlinear Dynamics Modulated by External Periodic Forces , 1989 .

[25]  Marián Boguñá,et al.  Percolation in self-similar networks , 2011, Physical review letters.

[26]  Carl T. Bergstrom,et al.  The Science of Science , 2018, Science.

[27]  Tobias Müller,et al.  The diameter of KPKVB random graphs , 2019, Advances in Applied Probability.

[28]  Nikolaos Fountoulakis,et al.  University of Birmingham Clustering and the hyperbolic geometry of complex networks , 2015 .

[29]  Nikolaos Fountoulakis,et al.  Law of large numbers for the largest component in a hyperbolic model of complex networks , 2016 .

[30]  Antoine Allard,et al.  Mercator: uncovering faithful hyperbolic embeddings of complex networks , 2019, New Journal of Physics.

[31]  Marián Boguñá,et al.  Emergence of Soft Communities from Geometric Preferential Attachment , 2015, Scientific Reports.

[32]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[33]  Carlos Alberola-López,et al.  libstable: Fast, Parallel, and High-Precision Computation of α-Stable Distributions in R, C/C++, and MATLAB , 2017 .

[34]  Tobias Friedrich,et al.  On the Diameter of Hyperbolic Random Graphs , 2018, SIAM J. Discret. Math..

[35]  Marián Boguñá,et al.  Small worlds and clustering in spatial networks , 2019, ArXiv.

[36]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[38]  Antoine Allard,et al.  The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013 , 2015, Scientific Reports.

[39]  Rami Puzis,et al.  Organization Mining Using Online Social Networks , 2013, Networks and Spatial Economics.

[40]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[41]  Marián Boguñá,et al.  Soft Communities in Similarity Space , 2017, Journal of Statistical Physics.

[42]  S. Janson Stable distributions , 2011, 1112.0220.

[43]  Amin Vahdat,et al.  On curvature and temperature of complex networks , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[45]  Kimmo Kaski,et al.  Stochastic Block Model Reveals the Map of Citation Patterns and Their Evolution in Time , 2017, ArXiv.

[46]  Nikolaos Fountoulakis,et al.  Typical distances in a geometric model for complex networks , 2015, Internet Math..

[47]  Marián Boguñá,et al.  Popularity versus similarity in growing networks , 2011, Nature.

[48]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[49]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.

[50]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[51]  M. Serrano,et al.  Hidden geometric correlations in real multiplex networks , 2016, Nature Physics.

[52]  Antoine Allard,et al.  Navigable maps of structural brain networks across species , 2018, PLoS Comput. Biol..