Loops, matchings and alternating-sign matrices

The appearance of numbers enumerating alternating sign matrices in stationary states of certain stochastic processes on matchings is reviewed. New conjectures concerning nest distribution functions are presented as well as a bijection between certain classes of alternating sign matrices and lozenge tilings of hexagons with cut off corners.

[1]  J. Propp,et al.  Alternating sign matrices and domino tilings , 1991, math/9201305.

[2]  A. Razumov,et al.  Combinatorial Nature of the Ground-State Vector of the O(1) Loop Model , 2001 .

[3]  David P. Robbins,et al.  Alternating Sign Matrices and Descending Plane Partitions , 1983, J. Comb. Theory, Ser. A.

[4]  V. Fridkin,et al.  Finite Size XXZ Spin Chain with Anisotropy Parameter Δ= $$ \frac{1} {2} $$ , 2000, nlin/0010021.

[5]  B. Nienhuis,et al.  Exact Expressions for Correlations in the Ground State of the Dense O(1) Loop Model , 2004 .

[6]  W. H. Mills,et al.  Proof of the Macdonald conjecture , 1982 .

[7]  The importance of being odd , 2000, cond-mat/0012035.

[8]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[9]  Greg Kuperberg,et al.  Another proof of the alternating sign matrix conjecture , 1996 .

[10]  P. Martin,et al.  On an algebraic approach to higher dimensional statistical mechanics , 1992, hep-th/9208061.

[11]  A. V. Razumov,et al.  O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices , 2001 .

[12]  David P. Robbins,et al.  The Story of 1, 2, 7, 42, 429, 7436, … , 1991 .

[13]  David P. Robbins Symmetry Classes of Alternating Sign Matrices , 2000 .

[14]  Osamu Tsuchiya,et al.  Determinant formula for the six-vertex model with reflecting end , 1998, solv-int/9804010.

[15]  D. Bressoud Proofs and Confirmations: The Story of the Alternating-Sign Matrix Conjecture , 1999 .

[16]  Doron Zeilberger A fast algorithm for proving terminating hypergeometric identities , 2006, Discret. Math..

[17]  V. Fridkin,et al.  LETTER TO THE EDITOR: Ground state of the quantum symmetric finite-size XXZ spin chain with anisotropy parameter Delta = ½ , 1999, hep-th/9912252.

[18]  A New Universalitity Class for Dynamic Processes , 2002 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Paul Martin,et al.  POTTS MODELS AND RELATED PROBLEMS IN STATISTICAL MECHANICS , 1991 .

[22]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[23]  A. V. Razumov,et al.  O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices , 2005 .

[24]  Ira M. Gessel,et al.  Strange Evaluations of Hypergeometric Series , 1982 .

[25]  Paul A. Pearce,et al.  The Raise and Peel Model of a Fluctuating Interface , 2004 .

[27]  D. A. Coker,et al.  Determinant formula for the six-vertex model , 1992 .

[28]  A new way to deal with Izergin-Korepin determinant at root of unity , 2002, math-ph/0204042.

[29]  D. Zeilberger Proof of the refined alternating sign matrix conjecture. , 1996 .

[30]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[31]  N. Slavnov,et al.  Emptiness formation probability of the XXZ spin-1 2 Heisenberg chain at ∆ = 1 2 , 2002 .

[32]  Mihai Ciucu,et al.  Enumeration of Lozenge Tilings of Hexagons with Cut-Off Corners , 2002, J. Comb. Theory, Ser. A.

[33]  A. G. Izergin,et al.  Partition function of the six-vertex model in a finite volume , 1987 .

[34]  J. Cardy,et al.  QUANTUM INVERSE SCATTERING METHOD AND CORRELATION FUNCTIONS , 1995 .

[35]  Henk W. J. Blöte,et al.  Critical behaviour of the fully packed loop model on the square lattice , 1996 .

[36]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Jean-Bernard Zuber On the Counting of Fully Packed Loop Configurations: Some New Conjectures , 2004, Electron. J. Comb..

[39]  B. Nienhuis,et al.  LETTER TO THE EDITOR: The quantum symmetric XXZ chain at Delta = - 1/2 , alternating-sign matrices and plane partitions , 2001 .

[40]  P. Pearce,et al.  Stochastic processes and conformal invariance. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Doron Zeilberger,et al.  Proof of the alternating sign matrix conjecture , 1994, Electron. J. Comb..

[42]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[43]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[44]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[45]  Soichi Okada Enumeration of symmetry classes of alternating sign matrices and characters of classical groups , 2004 .

[46]  Greg Kuperberg,et al.  Alternating-Sign Matrices and Domino Tilings (Part I) , 1992 .

[47]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[48]  Greg Kuperberg,et al.  Symmetry classes of alternating-sign matrices under one roof , 2000 .

[49]  James Gary Propp,et al.  The Many Faces of Alternating-Sign Matrices , 2002, DM-CCG.

[50]  Benjamin Wieland Large Dihedral Symmetry of the Set of Alternating Sign Matrices , 2000, Electron. J. Comb..

[51]  Jan de Gier,et al.  Temperley–Lieb stochastic processes , 2002 .

[52]  R. Baxter Solving Models in Statistical Mechanics , 1989 .

[53]  Vladimir E. Korepin,et al.  Calculation of norms of Bethe wave functions , 1982 .

[54]  A. V. Razumov,et al.  Spin chains and combinatorics , 2000 .

[55]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[56]  Lévy Algebraic structure of translation-invariant spin-1/2 xxz and q-Potts quantum chains. , 1991, Physical review letters.