Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials

The design and fabrication of a plasmonic black absorber with almost 100% absorbance spanning a broad range of frequencies from ultraviolet (UV) to the near infrared (NIR) is demonstrated. The perfect plasmonic absorber is achieved by a combination of a metal film with suitable metal/dielectric nanocomposites. Our fabrication technique is simple, versatile, cost-effective, and compatible with current industrial methods for solar absorber production.

[1]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[2]  Chun Jiang,et al.  Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating. , 2009, Optics express.

[3]  Xiaoliu Zuo,et al.  Tunable Absorption of Light via Localized Plasmon Resonances on a Metal Surface with Interspaced Ultra-thin Metal Gratings , 2011 .

[4]  Jeremy J. Baumberg,et al.  Omnidirectional absorption in nanostructured metal surfaces , 2008 .

[5]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[6]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[7]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[8]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[9]  Ping Sheng,et al.  Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold , 1997 .

[10]  V. Zaporojtchenko,et al.  An Omnidirectional Transparent Conducting‐Metal‐Based Plasmonic Nanocomposite , 2011, Advanced materials.

[11]  Vasyl G. Kravets,et al.  Plasmonic blackbody : Almost complete absorption of light in nanostructured metallic coatings , 2008 .

[12]  T. Ebbesen,et al.  Absorption-induced transparency. , 2011, Angewandte Chemie.

[13]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[14]  H. Eilers,et al.  Large broadband visible to infrared plasmonic absorption from ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix , 2006 .

[15]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[16]  V. Zaporojtchenko,et al.  Plasmonic properties of Ag nanoclusters in various polymer matrices , 2006, Nanotechnology.

[17]  Harald Giessen,et al.  Plasmon Hybridization in Stacked Cut‐Wire Metamaterials , 2007 .

[18]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[19]  Liyuan Liu,et al.  Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. , 2009, Optics express.

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Zeyu Zhao,et al.  Realizing near-perfect absorption at visible frequencies. , 2009, Optics express.

[22]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[23]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[24]  Xiong Li,et al.  Investigation on the role of the dielectric loss in metamaterial absorber. , 2010, Optics express.

[25]  Shengli Zou,et al.  Efficient and Tunable Light Trapping Thin Films , 2010 .