Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography.
暂无分享,去创建一个
G. Wollstein | H. Ishikawa | J. Schuman | David Huang | R. Varma | O. Tan | V. Chopra | A. Lu
[1] Geert Molenberghs,et al. Random Effects Models for Longitudinal Data , 2010 .
[2] Joel S Schuman,et al. Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. , 2008, Ophthalmology.
[3] David Huang,et al. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. , 2006, Ophthalmology.
[4] G. Mcgwin,et al. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. , 2006, Investigative ophthalmology & visual science.
[5] Paolo Brusini,et al. Enhanced Glaucoma Staging System (GSS 2) for Classifying Functional Damage in Glaucoma , 2006, Journal of glaucoma.
[6] Barry Cense,et al. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. , 2005, Archives of ophthalmology.
[7] Robert W Knighton,et al. Macular Symmetry Testing For Glaucoma Detection , 2005, Journal of glaucoma.
[8] J. Duker,et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. , 2005, Ophthalmology.
[9] Hiroshi Ishikawa,et al. Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.
[10] Wing-Ho Yung,et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. , 2005, Ophthalmology.
[11] F. Medeiros,et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.
[12] T. Sejnowski,et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.
[13] Hiroshi Ishikawa,et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. , 2004, American journal of ophthalmology.
[14] Teresa C. Chen,et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.
[15] S. Yun,et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.
[16] S. Yun,et al. High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.
[17] B. Bouma,et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.
[18] M. Wojtkowski,et al. Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.
[19] Changhuei Yang,et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.
[20] Joel S Schuman,et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. , 2003, American journal of ophthalmology.
[21] A. Fercher,et al. Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.
[22] Robert W Knighton,et al. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. , 2002, Archives of ophthalmology.
[23] Anthony J Correnti,et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. , 2003, Ophthalmology.
[24] A. Fercher,et al. Full range complex spectral optical coherence tomography technique in eye imaging. , 2002, Optics letters.
[25] A. Fercher,et al. In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.
[26] Coherent dynamics of photoexcited green fluorescent proteins. , 2001, Physical review letters.
[27] R L Williams,et al. A Note on Robust Variance Estimation for Cluster‐Correlated Data , 2000, Biometrics.
[28] R S Harwerth,et al. Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.
[29] Roel Bosker,et al. Multilevel analysis : an introduction to basic and advanced multilevel modeling , 1999 .
[30] H. Jampel,et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. , 1998, Ophthalmology.
[31] N A Obuchowski,et al. Nonparametric analysis of clustered ROC curve data. , 1997, Biometrics.
[32] John A. Nelder,et al. Generalized linear models. 2nd ed. , 1993 .
[33] H A Quigley,et al. Foveal ganglion cell loss is size dependent in experimental glaucoma. , 1993, Investigative ophthalmology & visual science.
[34] A. Scott,et al. A simple method for the analysis of clustered binary data. , 1992, Biometrics.
[35] A. Sommer,et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.
[36] J. Schuman,et al. Optical coherence tomography. , 2000, Science.
[37] R. Drysdale,et al. A distinct potassium channel polypeptide encoded by the Drosophila eag locus , 1991, Science.
[38] H A Quigley,et al. Retinal ganglion cell loss is size dependent in experimental glaucoma. , 1991, Investigative ophthalmology & visual science.
[39] A. Sommer,et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.
[40] G. Dunkelberger,et al. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. , 1989, American journal of ophthalmology.
[41] E. DeLong,et al. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.
[42] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[43] J Katz,et al. Evaluation of nerve fiber layer assessment. , 1984, Archives of ophthalmology.
[44] P J Airaksinen,et al. Diffuse and localized nerve fiber loss in glaucoma. , 1984, American journal of ophthalmology.
[45] J. Ware,et al. Random-effects models for longitudinal data. , 1982, Biometrics.
[46] H. Quigley,et al. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. , 1980, Archives of ophthalmology.
[47] D. R. Anderson,et al. The mode of progressive disc cupping in ocular hypertension and glaucoma. , 1980, Archives of ophthalmology.
[48] A. Sommer,et al. The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.