Highly efficient light management for perovskite solar cells

Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

[1]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[2]  Olle Inganäs,et al.  Trapping light with micro lenses in thin film organic photovoltaic cells. , 2008, Optics express.

[3]  A. Gombert,et al.  Functional microprism substrate for organic solar cells , 2006 .

[4]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[5]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[6]  Yi Cui,et al.  Broadband light management using low-Q whispering gallery modes in spherical nanoshells , 2012, Nature Communications.

[7]  Jeffrey Long,et al.  Materials to Devices , 2017 .

[8]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[9]  B. Xiao,et al.  Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3 (X = I and Br) Phases Predicted from HSE06. , 2014, The journal of physical chemistry letters.

[10]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[11]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[12]  Olle Inganäs,et al.  Light trapping in thin film organic solar cells , 2014 .

[13]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[14]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[15]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[16]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[17]  Dieter Meissner,et al.  Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells , 2002 .

[18]  Michael D. McGehee,et al.  Materials science: Fast-track solar cells , 2013, Nature.

[19]  Giuseppe Gigli,et al.  Growing perovskite into polymers for easy-processable optoelectronic devices , 2015, Scientific Reports.

[20]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[21]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[22]  A. Alivisatos,et al.  Dielectric core-shell optical antennas for strong solar absorption enhancement. , 2012, Nano letters.

[23]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[24]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[25]  K. Hermans,et al.  Quantification and Validation of the Efficiency Enhancement Reached by Application of a Retroreflective Light Trapping Texture on a Polymer Solar Cell , 2013 .

[26]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[27]  Harry A Atwater,et al.  Design of nanostructured solar cells using coupled optical and electrical modeling. , 2012, Nano letters.

[28]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[29]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[30]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[31]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[32]  Xiaofeng Li,et al.  Multi‐dimensional modeling of solar cells with electromagnetic and carrier transport calculations , 2013 .

[33]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[34]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[35]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[36]  Cesare Soci,et al.  Perovskite Solar Cells , 2016 .

[37]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[38]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[39]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[40]  H. Atwater,et al.  Modeling light trapping in nanostructured solar cells. , 2011, ACS Nano.

[41]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[42]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[43]  Yasuhiro Yamada,et al.  Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. , 2014, Journal of the American Chemical Society.

[44]  R. Service,et al.  Energy technology. Perovskite solar cells keep on surging. , 2014, Science.

[45]  Yi Cui,et al.  High‐Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector , 2012 .

[46]  O. Inganäs,et al.  Light trapping with total internal reflection and transparent electrodes in organic photovoltaic devices , 2012 .

[47]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[48]  P. Meredith,et al.  The rise of the perovskites: the future of low cost solar photovoltaics? , 2014 .