CMB at 2 × 2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release

Silk damping of primordial small scale perturbations in the photon-baryon fluid due to di ffusion of photons inevitably creates spectral distortions in the CMB. With the proposed CMB experiment PIXIE it might become possible to measure these distortions and thereby constrain the primordial power spectrum at comoving wavenumbers 50 Mpc −1 . k. 10 4 Mpc −1 . Since primordial fluctuations on these scales are completel y erased by Silk damping, these distortions may provide the only way to shed light on otherwise unobservable aspects of inflationary physics. A consistent treatment of the primordial dissipation problem requires going to second order in perturbation theory, while thermalizati on of these distortions necessitates consideration of second order in Compton scattering energy transfer. Here we give a full 2x2 treatment for creation and evolution of spectral distortio ns due to the acoustic dissipation process, consistently including the effect of polarization and photon mixing in the free streaming regime. We show that 1/3 of the total energy (9/4 larger than previous estimate) stored in small scale temperature perturbations imprints observable spectral distortions, while the remaining 2/3 only raise the average CMB temperature, an effect that is unobservable. At high redshift dissipation is mainly mediated through the quadrupole anisotropies, while after recombination peculiar motions are most important. During recombination the damping of the higher multipoles is also significant. We compute the average disto rtion for several examples using CosmoTherm, analyzing their dependence on parameters of the primordial power spectrum. For one of the best fit WMAP7 cosmologies, with nS = 1.027 and nrun =−0.034, the cooling of baryonic matter practically compensates the heating from acoustic dissipation in the µ-era. We also derive the evolution equations in first order pe rturbation theory for the spectral distortions. These first order anisotropies of spectral dis tortions may dominate over the corresponding second order contributions from recombination if an average fractional distortion of ∼ 10 −5 is already present before recombination.

[1]  J. Chluba,et al.  Towards a complete treatment of the cosmological recombination problem , 2010, 1010.3631.

[2]  The double Compton emissivity in a mildly relativistic thermal plasma within the soft photon limit , 2006, astro-ph/0611172.

[3]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[4]  Reionization and cosmic microwave background distortions: A complete treatment of second-order Compton scattering. , 1993, Physical review. D, Particles and fields.

[5]  R. Sunyaev,et al.  Signals from the epoch of cosmological recombination – Karl Schwarzschild Award Lecture 2008 , 2009, 0908.0435.

[6]  C. Bennett,et al.  Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument , 1994 .

[7]  P. Peebles RECOMBINATION OF THE PRIMEVAL PLASMA. , 1968 .

[8]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[9]  Satoshi Nozawa,et al.  Relativistic corrections to the Sunyaev-Zel'dovich effects for clusters of galaxies , 1999 .

[10]  A. Tartari,et al.  TRIS. II. Search for CMB Spectral Distortions at 0.60, 0.82, and 2.5 GHz , 2008, 0807.4750.

[11]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[12]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[13]  R. Weymann DIFFUSION APPROXIMATION FOR A PHOTON GAS INTERACTING WITH A PLASMA VIA THE COMPTON EFFECT , 1965 .

[14]  A. Tartari,et al.  TRIS. I. Absolute Measurements of the Sky Brightness Temperature at 0.6, 0.82, and 2.5 GHz , 2008, 0806.1415.

[15]  THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT FROM REIONIZATION , 2005, astro-ph/0504189.

[16]  B. Wandelt,et al.  More on crinkles in the last scattering surface , 2009, 0903.0871.

[17]  W. V. Leeuwen,et al.  Relativistic Kinetic Theory: Principles and Applications , 1980 .

[18]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[19]  A. Challinor,et al.  Thermal and kinematic corrections to the microwave background polarization induced by galaxy clusters along the line of sight , 1999, astro-ph/9905227.

[20]  Anisotropies in the cosmic microwave background : an analytic approach , 1994, astro-ph/9407093.

[21]  J. Chluba Aberrating the CMB sky: fast and accurate computation of the aberration kernel , 2011, 1102.3415.

[22]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[23]  F. V. Leeuwen,et al.  Peculiar velocity effects in high-resolution microwave background experiments , 2001, astro-ph/0112457.

[24]  E. Komatsu,et al.  CMB anisotropies at second order III: bispectrum from products of the first-order perturbations , 2009, 0903.0894.

[25]  Steven Weinberg,et al.  Entropy generation and the survival of protogalaxies in an expanding universe , 1971 .

[26]  Hu,et al.  Thermalization and spectral distortions of the cosmic background radiation. , 1993, Physical review. D, Particles and fields.

[27]  D. J. Fixsen,et al.  The Spectral Results of the Far-Infrared Absolute Spectrophotometer Instrument on COBE , 2002 .

[28]  R. Sunyaev,et al.  Induced two-photon decay of the 2s level and the rate of cosmological hydrogen recombination , 2006 .

[29]  Douglas P. Finkbeiner,et al.  CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch , 2009, 0906.1197.

[30]  Clusters of galaxies in the microwave band: Influence of the motion of the Solar System , 2004, astro-ph/0409058.

[31]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[32]  C. Burigana,et al.  A numerical code for the solution of the Kompaneets equation in cosmological context , 2009, 0905.2886.

[33]  Hu,et al.  Thermalization constraints and spectral distortions for massive unstable relic particles. , 1993, Physical review letters.

[34]  J. Bond,et al.  Designing density fluctuation spectra in inflation. , 1989, Physical review. D, Particles and fields.

[35]  The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground , 2008 .

[36]  A. Lightman Double Compton emission in radiation dominated thermal plasmas , 1981 .

[37]  R. Sunyaev,et al.  Does Bose-Einstein condensation of CMB photons cancel μ distortions created by dissipation of sound waves in the early Universe? , 2011, 1110.0475.

[38]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[39]  CMB anisotropies at second-order II: analytical approach , 2006, astro-ph/0610110.

[40]  W. B. Bonnor,et al.  Jeans' Formula for Gravitational Instability , 1957 .

[41]  L. Danese,et al.  The relic radiation spectrum and the thermal history of the universe , 1977 .

[42]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[43]  What can we learn on the thermal history of the Universe from future cosmic microwave background spectrum measurements at long wavelengths , 2003, astro-ph/0301133.

[44]  J. Zibin,et al.  Gauging the cosmic microwave background , 2008, 0808.2047.

[45]  F. Rohrlich,et al.  The Theory of Photons and Electrons , 1956 .

[46]  F. Jüttner Die Dynamik eines bewegten Gases in der Relativtheorie , 2022 .

[47]  Y. Zeldovich,et al.  The interaction of matter and radiation in a hot-model universe , 1969 .

[48]  M. Peloso,et al.  Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers , 2011, 1110.3327.

[49]  Jeremy Bernstein,et al.  Kinetic theory in the expanding universe , 1988 .

[50]  Douglas Scott,et al.  Power spectrum constraints from spectral distortions in the cosmic microwave background , 1994 .

[51]  L. Amendola,et al.  Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations , 2010, 1008.1183.

[52]  J. Chluba Fast and accurate computation of the aberration kernel for the cosmic microwave background sky , 2011 .

[53]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[54]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[55]  Y. Zeldovich,et al.  Small scale entropy and adiabatic density perturbations — Antimatter in the Universe , 1970 .

[56]  R. Wilson Modern Cosmology , 2004 .

[57]  R. Sunyaev,et al.  Cosmic Microwave Background Radiation in the Direction of a Moving Cluster of Galaxies with Hot Gas: Relativistic Corrections , 1998 .

[58]  M. Zaldarriaga,et al.  Non-Gaussianities from Perturbing Recombination , 2008, 0812.3658.

[59]  P. Steinhardt,et al.  Generating Ekpyrotic Curvature Perturbations Before the Big Bang , 2007, hep-th/0702153.

[60]  A. Lasenby,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect , 1997, astro-ph/9711161.

[61]  Ruth A. Daly,et al.  Spectral distortions of the microwave background radiation resulting from the damping of pressure waves , 1991 .

[62]  F. Bernardeau,et al.  The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations , 2010, 1003.0481.

[63]  Zaldarriaga,et al.  Analytic approach to the polarization of the cosmic microwave background in flat and open universes. , 1995, Physical review. D, Particles and fields.

[64]  R. B. Barreiro,et al.  Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies , 2011, 1101.2028.

[65]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[66]  Cosmic Microwave Background Anisotropies up to Second Order , 2007, astro-ph/0703496.

[67]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[68]  Constraining gravitino dark matter with the cosmic microwave background , 2005, hep-ph/0506229.

[69]  M. Halpern,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.

[70]  Cosmic microwave background observables of small field models of inflation , 2009, 0907.2384.

[71]  R. Cen,et al.  Properties of Cosmic Shock Waves in Large-Scale Structure Formation , 2000, astro-ph/0005444.

[72]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[73]  B. Wandelt,et al.  Crinkles in the last scattering surface: Non-Gaussianity from inhomogeneous recombination , 2008, 0810.4370.

[74]  A. Kosowsky,et al.  Signature of local motion in the microwave sky. , 2010, Physical review letters.

[75]  Edward J. Wollack,et al.  ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3–90 GHz , 2009, The Astrophysical Journal.

[76]  I. Khalatnikov,et al.  Investigations in relativistic cosmology , 1963 .

[77]  Free-bound emission from cosmological hydrogen recombination , 2006, astro-ph/0608120.

[78]  M. Markevitch,et al.  Do Clusters of Galaxies Affect the Spectrum of the Microwave Background , 1991 .

[79]  F. Bernardeau,et al.  The y-sky: diffuse spectral distortions of the cosmic microwave background , 2009, 0912.3655.

[80]  Nick Kaiser,et al.  Small-angle anisotropy of the microwave background radiation in the adiabatic theory , 1983 .

[81]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[82]  Edward J. Wollack,et al.  INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT , 2011 .

[83]  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. II. Inclusion of Peculiar Velocities , 1998, astro-ph/9804051.

[84]  Martin White,et al.  Acoustic Signatures in the Cosmic Microwave Background , 1996 .

[85]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .

[86]  John D. Barrow,et al.  Primordial density fluctuations and the microwave background spectrum , 1991 .

[87]  R. Sunyaev,et al.  The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.

[88]  C. Burigana,et al.  Constraints on the thermal history of the universe from the cosmic microwave background spectrum , 1991 .

[89]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[90]  Sara Seager,et al.  A New Calculation of the Recombination Epoch , 1999 .

[91]  The 4 Year COBE Normalization and Large-Scale Structure , 1996, astro-ph/9607060.

[92]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[93]  Superposition of blackbodies and the dipole anisotropy: A possibility to calibrate CMB experiments , 2004, astro-ph/0404067.

[94]  C. Pitrou The radiative transfer at second order: a full treatment of the Boltzmann equation with polarization , 2008, 0809.3036.

[95]  S. Matarrese,et al.  Non-Gaussianity in the Cosmic Microwave Background Anisotropies at Recombination in the Squeezed limit , 2011, 1109.2043.

[96]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[97]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.