Source coding and graph entropies

A sender wants to accurately convey information to a receiver who has some, possibly related, data. We study the expected number of bits the sender must transmit for one and for multiple instances in two communication scenarios and relate this number to the chromatic and Korner (1973) entropies of a naturally defined graph.

[1]  Avi Wigderson,et al.  Perfect hashing, graph entropy, and circuit complexity , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[2]  Aaron D. Wyner,et al.  An Upper Bound on the Entropy Series , 1972, Inf. Control..

[3]  T. Feder,et al.  Amortized communication complexity , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..

[6]  László Lovász,et al.  Entropy splitting for antiblocking corners and perfect graphs , 1990, Comb..

[7]  Jaikumar Radhakrishnan Better bounds for threshold formulas , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[8]  Moni Naor,et al.  Amortized Communication Complexity , 1995, SIAM J. Comput..

[9]  Ravi B. Boppana,et al.  Optimal separations between concurrent-write parallel machines , 1989, STOC '89.

[10]  Jeff Kahn,et al.  Entropy and sorting , 1992, STOC '92.

[11]  Alon Orlitsky,et al.  Worst-case interactive communication I: Two messages are almost optimal , 1990, IEEE Trans. Inf. Theory.

[12]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[13]  Noga Alon,et al.  Repeated communication and Ramsey graphs , 1995, IEEE Trans. Inf. Theory.

[14]  J. Körner Fredman-Kolmo´s bounds and information theory , 1986 .

[15]  A. Orlitsky,et al.  A lower bound on the expected length of one-to-one codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[16]  Gábor Simonyi,et al.  Graph entropy: A survey , 1993, Combinatorial Optimization.

[17]  H. S. WITSENHAUSEN,et al.  The zero-error side information problem and chromatic numbers (Corresp.) , 1976, IEEE Trans. Inf. Theory.