The physics of high-power arcs

Progress in the physics of high-power arcs has been largely due to a blend of detailed experimental and theoretical investigations aimed at explaining the electrical behaviour of the discharge in terms of fundamental physical processes. In the case of collision-dominated, high-pressure arcs the important role of radiative energy transfer, including strong self-absorption, has been established through the experimental and theoretical study of cylindrically symmetric, uncontaminated arc plasmas. As a result, an insight has been gained into the additional complications produced in naturally occurring high-pressure arcs by electrode vapour contamination and self-magnetically-propelled plasma flows. The application of similarity theory based upon the conservation equations of fluid mechanics has produced good correlation of the properties of arcs in transverse flows and magnetic fields under a number of different operating conditions. Criteria defining stable arc operation have been derived using stability theory whilst axisymmetric instabilities of arcs in accelerating flows have been related to vortex production at the arc boundary.

[1]  J. Novak Spectroscopic measurements in nitrogen arcs with respect to local thermodynamic equilibrium , 1977 .

[2]  W. Frie,et al.  Berechnung der Gaszusammensetzung und der Materialfunktionen von SF6 , 1967 .

[3]  S. Murthy,et al.  Analysis of Arc-Heating Phenomena in a Tube , 1964 .

[4]  W. Hermann,et al.  Theoretical description of the current interruption in hv gas blast breakers , 1977, IEEE Transactions on Power Apparatus and Systems.

[5]  A. M. Howatson,et al.  The instability of electric arcs burning axially in accelerated flow , 1976 .

[6]  W. Hertz Messung und Deutung des Leitwertabklingens zylindrischer Bögen , 1971 .

[7]  J. Lowke A relaxation method of calculating arc temperature profiles applied to discharges in sodium vapor , 1969 .

[8]  D. Benenson,et al.  Numerical Analysis of Alternating Current Arcs , 1974 .

[9]  C. Kruger Nonequilibrium in Confined‐Arc Plasmas , 1970 .

[10]  L. Niemeyer,et al.  Experimental and theoretical study of a stationary high-current arc in a supersonic nozzle flow , 1974 .

[11]  M. P. Reece The vacuum switch. Part 1: Properties of the vacuum arc , 1963 .

[12]  R. E. Voshall,et al.  Interruption ability of vacuum interrupters subjected to axial magnetic fields , 1972 .

[13]  J. Uhlenbusch,et al.  Influence of diffusion and nonequilibrium populations on noble-gas plasmas in electric arcs , 1971 .

[14]  V. I. Rakhovskiĭ Experimental Study of the Dynamics of Cathode Spots Development , 1976, IEEE Transactions on Plasma Science.

[15]  D. T. Tuma,et al.  Prediction of properties of arcs stabilized by forced convection , 1975 .

[16]  Interaction between a high-current arc and the air flow in an air-blast circuit breaker , 1975 .

[17]  M. Fang,et al.  Investigation of quasi‐steady‐state high‐current arcs in an orifice air flow , 1977 .

[18]  D. K. Davies,et al.  Erosion products from the cathode spot region of a copper vacuum arc , 1978 .

[19]  J. E. Jenkins,et al.  Cathode spot motion in high current vacuum arcs on copper electrodes , 1975 .

[20]  T. Myers,et al.  Experimental investigation of an electric arc in transverse aerodynamic and magnetic fields. , 1967 .

[21]  M R Barrault,et al.  Axial velocity variations in high-current free-burning arcs , 1976 .

[22]  J. Mentel The influence of vaporization upon the roots of a high current arc. I. Different forms of vaporization in the arc roots , 1977 .

[23]  J. Mentel The influence of vaporization upon the roots of a high current arc , 1978 .

[24]  R. Holmes,et al.  Deionisation of an interrupted vacuum arc , 1977 .

[25]  D.R. Airey,et al.  Elecrode vapour effects in high current gas blast switchgear arcs , 1976, IEEE Transactions on Power Apparatus and Systems.

[26]  F.R. El-Akkari,et al.  Simulation of transient and zero current behavior of arcs stabilized by forced convection , 1977, IEEE Transactions on Power Apparatus and Systems.

[27]  C. Kimblin Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs , 1974 .

[28]  K. Ragaller,et al.  Investigation of a cylindrical, axially blown, high-pressure arc , 1974 .

[29]  C. W. Kimblin,et al.  Anode Voltage Drop and Anode Spot Formation in dc Vacuum Arcs , 1969 .

[30]  B. Bowman Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A , 1972 .

[31]  P. Schreiber,et al.  MEASUREMENT OF NITROGEN PLASMA TRANSPORT PROPERTIES. , 1972 .

[32]  W. Hagenah Das Strömungsfeld im freien Kohlebogen , 1950 .

[33]  H. Emmons Arc Measurement of High‐Temperature Gas Transport Properties , 1967 .

[34]  D. Topham The characteristics of axial flow electric arcs subject to pressure gradients , 1972 .

[35]  R. E. Voshall,et al.  Decay of electrical conductance and temperature of arc plasmas , 1973 .

[36]  G. Jones,et al.  Transient temperature distributions in cylindrical arc columns following abrupt current changes , 1971 .

[37]  A. Guile,et al.  High-current arcs in transverse magnetic fields in air at atmospheric pressure , 1969 .

[38]  J. Lowke,et al.  A simple model for high‐current arcs stabilized by forced convection , 1975 .

[39]  J. Yos,et al.  Measurements of electrical and thermal conductivity of hydrogen, nitrogen, and argon at high temperatures , 1970 .

[40]  Richard E. Kinsinger A Numerical Model for Current-Zero Arc Interruption Processes , 1974 .

[41]  K. Ernst,et al.  The Energy Transport, Including Emission and Absorption, in N2-Arcs of Different Radii , 1973 .

[42]  B. L. Hunt,et al.  Radiative transfer in nitrogen for the case of uniform properties and local thermodynamic equilibrium , 1967 .

[43]  S. Yanabu,et al.  Post-arc current mechanism in vacuum interrupters , 1973 .

[44]  William D. Davis,et al.  Analysis of the Electrode Products Emitted by dc Arcs in a Vacuum Ambient , 1969 .

[45]  J. Lowke,et al.  Simple theory of free-burning arcs , 1979 .

[46]  O. Yas’ko Correlation of the characteristics of electric arcs , 1969 .

[47]  Determination of Streaming Velocity and the Flow of Heat and Mass in High‐Current Arcs , 1960 .

[48]  A. D. Stokes,et al.  An Approximate Model for High Current Free Burning Arcs , 1978 .

[49]  Satoru Yanabu,et al.  Vacuum arc under an axial magnetic field and its interrupting ability , 1979 .

[50]  J. Daalder Components of cathode erosion in vacuum arcs , 1976 .

[51]  J. E. Jenkins,et al.  The voltage, self-generated magnetic field and current distribution in a high-current vacuum arc , 1978 .

[52]  G. Ecker Anode Spot Instability I. The Homogeneous Short Gap Instability , 1974 .

[53]  G. R. Mitchell High-current vacuum arcs. Part 2: Theoretical outline , 1970 .

[54]  G. A. Farrall,et al.  Vacuum arcs and switching , 1973 .

[55]  J. Lowke,et al.  Arc constriction in lamps containing mercury and iodine , 1975 .

[56]  D. Schuocker Improved Model for Anode Spot Formation in Vacuum Arcs , 1979, IEEE Transactions on Plasma Science.

[57]  E. Schade,et al.  Rotating high current arc , 1979 .

[58]  J. Lowke,et al.  Predictions of arc temperature profiles using approximate emission coefficients for radiation losses , 1974 .

[59]  S. Chan,et al.  The DC Arc in a Supersonic Nozzle Flow , 1978, IEEE Transactions on Plasma Science.

[60]  J. E. Jenkins,et al.  Measurement of the neutral vapour density decay following the extinction of a high-current vacuum arc between copper electrodes , 1975 .

[61]  J. Swift,et al.  Time-resolved radial temperature profiles for 10 kA SF6 arcs , 1975 .

[62]  R. S. Devoto,et al.  Electrical conductivity from electric arc measurements , 1973, Journal of Plasma Physics.

[63]  J. Lowke,et al.  Calculation of temperature profiles of high pressure electric arcs using the diffusion approximation for radiation transfer. , 1969 .

[64]  J. Grissom Energy distributions of mass-selected ions from the plasma of a pulsed vacuum arc , 1974 .

[65]  L. S. Frost,et al.  Composition and transport properties of SF 6 and their use in a simplified enthalpy flow arc model , 1971 .

[66]  L. Niemeyer,et al.  Investigation on the physical phenomena around current zero in HV gas blast breakers , 1976, IEEE Transactions on Power Apparatus and Systems.

[67]  J. D. Cobine,et al.  Anode Phenomena in Metal‐Vapor Arcs at High Currents , 1971 .

[68]  C. W. Kimblin,et al.  Vacuum arc ion currents and electrode phenomena , 1971 .

[69]  J. Mentel The influence of vaporization upon the roots of a high current arc. II , 1977 .

[70]  L. Niemeyer,et al.  Evaporation Dominated High Current Arcs in Narrow Channels , 1978, IEEE Transactions on Power Apparatus and Systems.

[71]  H. Wittel,et al.  Investigations of the properties of SF 6 as an arc quenching medium , 1971 .

[72]  R. Wienecke über das Geschwindigkeitsfeld der Hochstromkohlebogensäule , 1955 .

[73]  K. Ragaller,et al.  Current Interruption in High-Voltage Networks , 1978 .

[74]  D. Lidgate,et al.  Radiative energy losses from a high-current air-blast arc , 1977 .

[75]  C. Kimblin,et al.  Electrical conductance decay of interrupted arc columns , 1966 .

[76]  M. Fang,et al.  Radiation transport in wall-stabilised nitrogen arcs , 1978 .

[77]  M. Fang,et al.  A Current-Zero Arc Model Based on Forced Convection , 1979, IEEE Transactions on Plasma Science.

[78]  C. W. Kimblin,et al.  Dielectric Recovery and Shield-Currents in Vacuum-Arc Interrupters , 1971 .

[79]  Properties of Magnetically Balanced Arcs , 1969 .

[80]  H. H. Maecker,et al.  Principles of arc motion and displacement , 1971 .

[81]  M. Fang,et al.  The transport and thermodynamic properties of a copper-nitrogen mixture , 1977 .

[82]  M T C Fang,et al.  Integral methods of analysing electric arcs. III. Shape-factor correlation for low radiation and laminar flow , 1976 .

[83]  D. Topham CORRIGENDA: The electric arc in constant pressure axial gas flow , 1971 .

[84]  E. Schade,et al.  Radiative energy balance in cylindrical nitrogen arcs , 1972 .

[85]  J. Lowke,et al.  Characteristics of Radiation‐Dominated Electric Arcs , 1970 .

[86]  Osami Morimiya,et al.  High Current Vacuum Arcs Stabilized by Axial Magnetic Fields , 1973 .

[87]  G. R. Mitchell High-current vacuum arcs. Part 1: An experimental study , 1970 .

[88]  M. Fang,et al.  Temperature variations in cylindrical arc columns during the current-zero period , 1973 .

[89]  R. J. Zollweg,et al.  Theoretical description of ac arcs in mercury and argon , 1975 .

[90]  G. A. Farrall,et al.  Vacuum arc recovery phenomena , 1964 .

[91]  K. Ragaller,et al.  Investigations on Instabilities of Electric Arcs , 1974 .

[92]  M D Cowley,et al.  Integral methods of analysing electric arcs: I. Formulation , 1974 .

[93]  J.G.J. Sloot,et al.  Magnetically driven arcs with combined column and electrode interactions , 1975 .

[94]  W. Hermann,et al.  Transportfunktionen von Stickstoff bis 26000 °K , 1970 .

[95]  B. W. Swanson,et al.  Studies of Highly Radiative Plasmas Using the Wall-Stabilized , 1966 .

[96]  Thomas R. Blackburn,et al.  Radiation losses from high current free burning arcs , 1973 .

[97]  The Local Electrical Properties of Gas Blast Arcs near Current Zero , 1978, IEEE Transactions on Plasma Science.

[98]  G. Frind,et al.  Current Zero Phenomena in an Orifice Type Gas Blast Interrupter , 1980, IEEE Transactions on Power Apparatus and Systems.

[99]  T. E. Browne,et al.  Arc Cooling and Short Line Fault Interruption , 1971 .

[100]  R. S. Devoto Transport coefficients of ionized argon , 1973 .