High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation

[1]  Yann Brenier,et al.  Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .

[2]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[3]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[4]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[5]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[6]  S. Succi,et al.  The lattice Boltzmann equation on irregular lattices , 1992 .

[7]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[8]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[9]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[10]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[11]  G. Wittum,et al.  Downwind numbering: robust multigrid for convection—diffusion problems , 1997 .

[12]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[13]  William Kahan,et al.  Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..

[14]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[15]  R. Natalini A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation Laws , 1998 .

[16]  Wei Shyy,et al.  On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates , 1998 .

[17]  So-Hsiang Chou,et al.  Lattice Boltzmann method on irregular meshes , 1998 .

[18]  Jinchao Xu,et al.  A Crosswind Block Iterative Method for Convection-Dominated Problems , 1999, SIAM J. Sci. Comput..

[19]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[20]  I. Karlin,et al.  Stabilization of the lattice boltzmann method by the H theorem: A numerical test , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Roberto Natalini,et al.  Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws , 2000, SIAM J. Numer. Anal..

[22]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[23]  Philippe Villedieu,et al.  A Compressible Model for Separated Two-Phase Flows Computations , 2002 .

[24]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[25]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[26]  Jianzhong Lin,et al.  Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element , 2003 .

[27]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[28]  François Bouchut,et al.  A REDUCED STABILITY CONDITION FOR NONLINEAR RELAXATION TO CONSERVATION LAWS , 2004 .

[29]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[30]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[31]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[32]  P. Helluy,et al.  Numerical schemes for low Mach wave breaking , 2007 .

[33]  Jostein R. Natvig,et al.  Fast computation of multiphase flow in porous media by implicit discontinuous Galerkin schemes with optimal ordering of elements , 2008, J. Comput. Phys..

[34]  Frédéric Coquel,et al.  Large Time Step Positivity-Preserving Method for Multiphase Flows , 2008 .

[35]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[36]  Timothy A. Davis,et al.  Algorithm 907 , 2010 .

[37]  Wim Desmet,et al.  CFL Conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids , 2011, J. Comput. Phys..

[38]  Cédric Augonnet,et al.  StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators , 2012, EuroMPI.

[39]  Paul J. Dellar,et al.  An interpretation and derivation of the lattice Boltzmann method using Strang splitting , 2013, Comput. Math. Appl..

[40]  J. Pozorski,et al.  Lattice Boltzmann simulations of flow past a circular cylinder and in simple porous media , 2013 .

[41]  A. N. Gorban,et al.  Add-ons for Lattice Boltzmann Methods: Regularization, Filtering and Limiters , 2013 .

[42]  Philippe Angot,et al.  An optimal penalty method for a hyperbolic system modeling the edge plasma transport in a tokamak , 2014, J. Comput. Phys..

[43]  Benjamin Graille,et al.  Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method , 2014, J. Comput. Phys..

[44]  Pierre Ramet,et al.  3D Cartesian Transport Sweep for Massively Parallel Architectures with PaRSEC , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.

[45]  Philippe Helluy,et al.  Palindromic discontinuous Galerkin method for kinetic equations with stiff relaxation , 2016 .

[46]  Philippe Helluy,et al.  Task-Based Parallelization of an Implicit Kinetic Scheme , 2017, 1702.00169.