Numerical computations with the trace formula and the Selberg eigenvalue conjecture
暂无分享,去创建一个
[1] M. Eichler. Lectures on modular correspondences , 1955 .
[2] Andrew R. Booker. Artin's Conjecture, Turing's Method, and the Riemann Hypothesis , 2006, Exp. Math..
[3] Pham Do Tuan,et al. On the estimation of Fourier coefficients. , 1969 .
[4] C. Hooley. On Artin's conjecture. , 1967 .
[5] Henryk Iwaniec,et al. Kloosterman sums and Fourier coefficients of cusp forms , 1982 .
[6] C. Grosche,et al. Selberg trace formula for bordered Riemann surfaces: Hyperbolic, elliptic and parabolic conjugacy classes, and determinants of Maass-Laplacians , 1994 .
[7] Some remarks on a spectral correspondence for maass waveforms , 2001 .
[8] Andrew R. Booker. Quadratic class numbers and character sums , 2006, Math. Comput..
[9] Ian Kiming,et al. On the experimental verification of the artin conjecture for 2-dimensional odd galois representations over Q liftings of 2-dimensional projective galois representations over Q , 1994 .
[10] H. Helson. Harmonic Analysis , 1983 .
[11] D. Ramakrishnan,et al. Contributions to automorphic forms, geometry, and number theory , 2004 .
[12] C. Matthies,et al. Selberg’s ζ function and the quantization of chaos , 1991 .
[13] Jerrold Tunnell,et al. Artin’s conjecture for representations of octahedral type , 1981 .
[14] Robert P. Langlands,et al. BASE CHANGE FOR GL(2) , 1980 .
[15] M. Huxley. Introduction to Kloostermania , 1985 .
[16] J. Serre. Modular forms of weight one and Galois representations , 2003 .
[17] REPRESENTATIONS GALOISIENNES PAIRES , 1985 .
[18] Steiner,et al. Staircase functions, spectral rigidity, and a rule for quantizing chaos. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[19] A. Atkin,et al. Twists of newforms and pseudo-eigenvalues ofW-operators , 1978 .
[20] A. Venkov. Spectral theory of automorphic functions , 1982 .
[21] Even icosahedral Galois representations of prime conductor , 2004, math/0405534.
[22] Fredrik Strömberg. Computational Aspects of Maass Waveforms , 2005 .
[23] Andrew R. Booker,et al. Effective computation of Maass cusp forms , 2006 .
[24] H. Maass. Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichlet scher Reihen durch Funktionalgleichungen , 1949 .
[25] A. Atkin,et al. Modular Forms , 2017 .
[26] D. Hejhal. The Selberg trace formula for PSL (2, IR) , 1983 .
[27] Gerhard Frey,et al. On Artin's conjecture for odd 2-dimensional representations , 1994 .
[28] T. Miyake. On Automorphic Forms on GL 2 and Hecke Operators , 1971 .
[29] Henryk Iwaniec,et al. Elementary and analytic theory of numbers , 1985 .
[30] S. Gelbart,et al. A relation between automorphic representations of ${\rm GL}(2)$ and ${\rm GL}(3)$ , 1978 .
[31] S. Gelbart,et al. A relation between automorphic representations of GL(2) and GL(3) , 2003 .
[32] J. Neukirch. Algebraic Number Theory , 1999 .
[33] A. Atkin,et al. Hecke operators on Γ0(m) , 1970 .