Numerical computations with the trace formula and the Selberg eigenvalue conjecture

Abstract We verify the Selberg eigenvalue conjecture for congruence groups of small squarefree conductor, improving on a result of Huxley [M. N. Huxley, Introduction to Kloostermania, in: Elementary and analytic theory of numbers, Banach Center Publ. 17, Warsaw (1985), 217–306.]. The main tool is the Selberg trace formula which, unlike previous geometric methods, allows for treatment of cases where the eigenvalue 1/4 is present. We present a few other sample applications, including the classification of even 2-dimensional Galois representations of small squarefree conductor.

[1]  M. Eichler Lectures on modular correspondences , 1955 .

[2]  Andrew R. Booker Artin's Conjecture, Turing's Method, and the Riemann Hypothesis , 2006, Exp. Math..

[3]  Pham Do Tuan,et al.  On the estimation of Fourier coefficients. , 1969 .

[4]  C. Hooley On Artin's conjecture. , 1967 .

[5]  Henryk Iwaniec,et al.  Kloosterman sums and Fourier coefficients of cusp forms , 1982 .

[6]  C. Grosche,et al.  Selberg trace formula for bordered Riemann surfaces: Hyperbolic, elliptic and parabolic conjugacy classes, and determinants of Maass-Laplacians , 1994 .

[7]  Some remarks on a spectral correspondence for maass waveforms , 2001 .

[8]  Andrew R. Booker Quadratic class numbers and character sums , 2006, Math. Comput..

[9]  Ian Kiming,et al.  On the experimental verification of the artin conjecture for 2-dimensional odd galois representations over Q liftings of 2-dimensional projective galois representations over Q , 1994 .

[10]  H. Helson Harmonic Analysis , 1983 .

[11]  D. Ramakrishnan,et al.  Contributions to automorphic forms, geometry, and number theory , 2004 .

[12]  C. Matthies,et al.  Selberg’s ζ function and the quantization of chaos , 1991 .

[13]  Jerrold Tunnell,et al.  Artin’s conjecture for representations of octahedral type , 1981 .

[14]  Robert P. Langlands,et al.  BASE CHANGE FOR GL(2) , 1980 .

[15]  M. Huxley Introduction to Kloostermania , 1985 .

[16]  J. Serre Modular forms of weight one and Galois representations , 2003 .

[17]  REPRESENTATIONS GALOISIENNES PAIRES , 1985 .

[18]  Steiner,et al.  Staircase functions, spectral rigidity, and a rule for quantizing chaos. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  A. Atkin,et al.  Twists of newforms and pseudo-eigenvalues ofW-operators , 1978 .

[20]  A. Venkov Spectral theory of automorphic functions , 1982 .

[21]  Even icosahedral Galois representations of prime conductor , 2004, math/0405534.

[22]  Fredrik Strömberg Computational Aspects of Maass Waveforms , 2005 .

[23]  Andrew R. Booker,et al.  Effective computation of Maass cusp forms , 2006 .

[24]  H. Maass Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichlet scher Reihen durch Funktionalgleichungen , 1949 .

[25]  A. Atkin,et al.  Modular Forms , 2017 .

[26]  D. Hejhal The Selberg trace formula for PSL (2, IR) , 1983 .

[27]  Gerhard Frey,et al.  On Artin's conjecture for odd 2-dimensional representations , 1994 .

[28]  T. Miyake On Automorphic Forms on GL 2 and Hecke Operators , 1971 .

[29]  Henryk Iwaniec,et al.  Elementary and analytic theory of numbers , 1985 .

[30]  S. Gelbart,et al.  A relation between automorphic representations of ${\rm GL}(2)$ and ${\rm GL}(3)$ , 1978 .

[31]  S. Gelbart,et al.  A relation between automorphic representations of GL(2) and GL(3) , 2003 .

[32]  J. Neukirch Algebraic Number Theory , 1999 .

[33]  A. Atkin,et al.  Hecke operators on Γ0(m) , 1970 .