Polarimetric “Fingerprints” of Different Microphysical Processes in Clouds and Precipitation

[1]  A. Khain,et al.  Physical Processes in Clouds and Cloud Modeling , 2018 .

[2]  Jacob T. Carlin The Use of Polarimetric Radar Data for Informing Numerical Weather Prediction Models , 2018 .

[3]  Dana M. Tobin,et al.  Polarimetric Radar and Surface-Based Precipitation-Type Observations of Ice Pellet to Freezing Rain Transitions , 2017 .

[4]  A. Ryzhkov,et al.  A Polarimetric Analysis of Ice Microphysical Processes in Snow, Using Quasi-Vertical Profiles , 2017 .

[5]  A. Ryzhkov,et al.  Towards nowcasting of winter precipitation: The Black Ice Event in Berlin 2014 , 2017 .

[6]  Annakaisa von Lerber,et al.  Quantifying the effect of riming on snowfall using ground‐based observations , 2017 .

[7]  Annakaisa von Lerber,et al.  How dual‐polarization radar observations can be used to verify model representation of secondary ice , 2016 .

[8]  Alexander V. Ryzhkov,et al.  Radar Observation of Evaporation and Implications for Quantitative Precipitation and Cooling Rate Estimation , 2016 .

[9]  David L. Mitchell,et al.  Growth of ice particle mass and projected area during riming , 2016 .

[10]  A. Ryzhkov,et al.  Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event , 2016 .

[11]  A. Ryzhkov,et al.  Polarimetric radar and aircraft observations of saggy bright bands during MC3E , 2016 .

[12]  Pengfei Zhang,et al.  Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data , 2016 .

[13]  A. Ryzhkov,et al.  Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for Hail Size Discrimination , 2016 .

[14]  Alexander V. Ryzhkov,et al.  Use of X-Band Differential Reflectivity Measurements to Study Shallow Arctic Mixed-Phase Clouds , 2016 .

[15]  Sanghun Lim,et al.  Dual‐polarization radar signatures in snowstorms: Role of snowflake aggregation , 2015 .

[16]  M. Kumjian,et al.  Polarimetric Radar Signatures of Dendritic Growth Zones within Colorado Winter Storms , 2015 .

[17]  Alexis Berne,et al.  Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014 , 2015 .

[18]  John M. Vogel Attempts to observe polarimetric signatures of riming in stratiform precipitation , 2015 .

[19]  M. Poellot,et al.  Observations of Ice Microphysics through the Melting Layer , 2015 .

[20]  A. Ryzhkov,et al.  Discrimination between Winter Precipitation Types Based on Spectral-Bin Microphysical Modeling , 2015 .

[21]  Teresa M. Bals-Elsholz,et al.  Measurements of Differential Reflectivity in Snowstorms and Warm Season Stratiform Systems , 2015 .

[22]  Daniel T. Dawson,et al.  Does wind shear cause hydrometeor size sorting , 2015 .

[23]  A. Ryzhkov,et al.  Theory of Time-Dependent Freezing. Part II: Scheme for Freezing Raindrops and Simulations by a Cloud Model with Spectral Bin Microphysics , 2015 .

[24]  A. Ryzhkov,et al.  Investigations of Backscatter Differential Phase in the Melting Layer , 2014 .

[25]  Olivier P. Prat,et al.  The Impact of Raindrop Collisional Processes on the Polarimetric Radar Variables , 2014 .

[26]  Alexander Khain,et al.  The Anatomy and Physics of Z(DR) Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model , 2014 .

[27]  Pengfei Zhang,et al.  Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications , 2013 .

[28]  Alexander Khain,et al.  Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling , 2013 .

[29]  Alexander V. Ryzhkov,et al.  A Dual-Polarization Radar Signature of Hydrometeor Refreezing in Winter Storms , 2013 .

[30]  A. Ryzhkov,et al.  C-Band Polarimetric Radar QPE Based on Specific Differential Propagation Phase for Extreme Typhoon Rainfall , 2013 .

[31]  V. Chandrasekar,et al.  Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies , 2013 .

[32]  Alexander V. Ryzhkov,et al.  Comparison of polarimetric signatures of hail at S and C bands for different hail sizes , 2013 .

[33]  Jerry M. Straka,et al.  Polarimetric Signatures above the Melting Layer in Winter Storms: An Observational and Modeling Study , 2013 .

[34]  A. Ryzhkov,et al.  Freezing of Raindrops in Deep Convective Updrafts: A Microphysical and Polarimetric Model , 2012 .

[35]  Sergey Y. Matrosov,et al.  Observations of Ice Crystal Habits with a Scanning Polarimetric W-Band Radar at Slant Linear Depolarization Ratio Mode , 2012 .

[36]  Alexander V. Ryzhkov,et al.  The Impact of Size Sorting on the Polarimetric Radar Variables , 2012 .

[37]  A. Ryzhkov,et al.  A Dual-Wavelength Polarimetric Analysis of the 16 May 2010 Oklahoma City Extreme Hailstorm , 2012 .

[38]  A. Heymsfield,et al.  Ice Crystals Growing from Vapor in Supercooled Clouds between −2.5° and −22°C: Testing Current Parameterization Methods Using Laboratory Data , 2011 .

[39]  Alexander V. Ryzhkov,et al.  Winter Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer Observations in Central Oklahoma , 2011 .

[40]  J. Verlinde,et al.  Physics and Chemistry of Clouds: Transformations , 2011 .

[41]  A. Ryzhkov,et al.  Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics , 2011 .

[42]  Patrick C. Kennedy,et al.  S-Band Dual-Polarization Radar Observations of Winter Storms , 2011 .

[43]  A. Ryzhkov,et al.  Attenuation and Differential Attenuation of 5-cm-Wavelength Radiation in Melting Hail , 2011 .

[44]  I. Zawadzki,et al.  Snow Studies. Part I: A Study of Natural Variability of Snow Terminal Velocity , 2010 .

[45]  M. Xue,et al.  Comparison of Evaporation and Cold Pool Development between Single-Moment and Multimoment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms , 2010 .

[46]  Alexander V. Ryzhkov,et al.  The Impact of Evaporation on Polarimetric Characteristics of Rain: Theoretical Model and Practical Implications , 2009 .

[47]  M. Bailey,et al.  A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies , 2009 .

[48]  Alexander V. Ryzhkov,et al.  Storm-Relative Helicity Revealed from Polarimetric Radar Measurements , 2009 .

[49]  M. Xue,et al.  Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables , 2008 .

[50]  Roy Rasmussen,et al.  A Statistical and Physical Description of Hydrometeor Distributions in Colorado Snowstorms Using a Video Disdrometer , 2007 .

[51]  A. Pokrovsky,et al.  The Influence of Time-Dependent Melting on the Dynamics and Precipitation Production in Maritime and Continental Storm Clouds , 2007 .

[52]  Frédéric Fabry,et al.  Modeling of the Melting Layer. Part III: The Density Effect , 2005 .

[53]  Kyoko Ikeda,et al.  Freezing-Level Estimation with Polarimetric Radar , 2004 .

[54]  Dong-Bin Shin,et al.  Constraining Microwave Brightness Temperatures by Radar Brightband Observations , 2003 .

[55]  Guifu Zhang,et al.  Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment , 2002 .

[56]  P. Bauer,et al.  A Melting-Layer Model for Passive/Active Microwave Remote Sensing Applications. Part I: Model Formulation and Comparison with Observations , 2001 .

[57]  Sergey Y. Matrosov,et al.  On the Use of Radar Depolarization Ratios for Estimating Shapes of Ice Hydrometeors in Winter Clouds , 2001 .

[58]  Frédéric Fabry,et al.  Modeling of the Melting Layer. Part II: Electromagnetic , 1999 .

[59]  Isztar Zawadzki,et al.  Modeling of the melting layer. Part I : Dynamics and microphysics , 1999 .

[60]  N. Fukuta,et al.  The Growth of Atmospheric Ice Crystals: A Summary of Findings in Vertical Supercooled Cloud Tunnel Studies , 1999 .

[61]  A. Waldvogel,et al.  Size distribution of hydrometeors through the melting layer , 1998 .

[62]  Anthony R. Holt,et al.  An anisotropic model of the melting layer , 1998 .

[63]  Frédéric Fabry,et al.  Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation , 1995 .

[64]  E. Weingartner,et al.  An Analysis of Accreted Drop Sizes and Mass on Rimed Snow Crystals , 1994 .

[65]  Jen‐Ping Chen,et al.  The Theoretical Basis for the Parameterization of Ice Crystal Habits: Growth by Vapor Deposition , 1994 .

[66]  K. Aydin,et al.  A computational study of polarimetric radar observables in hail , 1990, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Jothiram Vivekanandan,et al.  Multiparameter Radar Modeling and Observations of Melting Ice , 1990 .

[68]  Wim Klaassen,et al.  Radar Observations and Simulation of the Melting Layer of Precipitation , 1988 .

[69]  Roy Rasmussen,et al.  Melting and Shedding of Graupel and Hail. Part I: Model Physics , 1987 .

[70]  L. Cheng,et al.  Hailstone Size Distributions and Their Relationship to Storm Thermodynamics. , 1985 .

[71]  Roy Rasmussen,et al.  A Wind Tunnel and Theoretical Study on the Melting Behavior of Atmospheric Ice Particles: III. Experiment and Theory for Spherical Ice Particles of Radius > 500 μm , 1984 .

[72]  Carlton W. Ulbrich,et al.  Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band , 1977 .

[73]  J. Hallett,et al.  Production of secondary ice particles during the riming process , 1974, Nature.

[74]  W. Macklin,et al.  The shedding of accreted water during hailstone growth , 1973 .

[75]  A. H. Auer,et al.  The Dimension of Ice Crystals in Natural Clouds , 1970 .

[76]  D. A. Johnson,et al.  Freezing and shattering of supercooled water drops , 1968 .

[77]  J. Marshall,et al.  THE EFFECT OF WIND SHEAR ON FALLING PRECIPITATION , 1955 .

[78]  E. Bigg The formation of atmospheric ice crystals by the freezing of droplets , 1953 .

[79]  E. Bigg The supercooling of water , 1953 .

[80]  J. S. Marshall,et al.  PRECIPITATION TRAJECTORIES AND PATTERNS , 1953 .

[81]  M. Kumjian The impact of precipitation physical processes on the polarimetric radar variables , 2012 .

[82]  U. Blahak,et al.  The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame , 2011 .

[83]  Guifu Zhang,et al.  Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme , 2010 .

[84]  J. Straka Cloud and Precipitation Microphysics: Vapor diffusion growth of ice-water crystals and particles , 2009 .

[85]  A. Ryzhkov,et al.  Exploring model-based polarimetric retrieval of vertical profiles of precipitation , 2008 .

[86]  S. Giangrande Investigation of polarimetric measurements of rainfall at close and distant ranges , 2007 .

[87]  Herman Russchenberg,et al.  Backscattering by and propagation through the melting layer of precipitation: a new polarimetric model , 1996, IEEE Trans. Geosci. Remote. Sens..

[88]  Tatsuo Endoh,et al.  Vapor Diffusional Growth of Free-Falling Snow Crystals between -3 and -23°C , 1991 .

[89]  Hiroshi Tanaka,et al.  Microphysical Processes of Melting Snowflakes Detected by Two-Wavelength Radar: Part I. Principle of Measurement Based on Model Calculation@@@第I部モデル計算に基づく測定の原理 , 1984 .

[90]  M. English,et al.  A Relationship Between Hailstone Concentration and Size. , 1983 .

[91]  C. Ulbrich,et al.  Hail Parameter Relations: A Comprehensive Digest , 1982 .

[92]  R. Rogers,et al.  A short course in cloud physics , 1976 .