Exploiting locality in probabilistic inference

This thesis investigates computational properties of decomposable probability models, which can be represented in terms of marginals over subsets of variables. We show that decomposable representations have significant locality structure that can be exploited to yield effective solutions to two important problems. The first problem is filtering in dynamic Bayesian networks, which is typically intractable because the belief state collapses to a representation with no independence structure. We present a novel technique for filtering, called thin junction tree filtering (TJTF), that approximates the belief state by a decomposable model. By exploiting locality in the belief state representation, TJTF can automatically and efficiently identify the weakest dependencies in the belief state and prune them to control the complexity of filtering. We apply TJTF to simultaneous localization and mapping, a fundamental problem in mobile robotics, and obtain a solution that performs comparably with exact methods but with substantially better time and space complexity. The second problem is distributed inference, where the nodes of a network collaborate to solve an inference problem. We present a robust architecture for distributed inference in which the nodes assemble themselves into a junction tree and solve the inference problem by message passing. In settings with unreliable communication and node failures, traditional message passing algorithms can fail because nodes cannot access the complete probability model. We present a new message passing algorithm that exploits the locality of decomposable representations to guarantee that each node can make inferences using whatever parts of the model are available. The algorithm is exact at convergence, and when parts of the model are inaccessible, its estimate is an informative approximation to the true posterior. The approach is demonstrated on the problem of automatic sensor calibration in wireless sensor networks.

[1]  R. Dreisbach,et al.  STANFORD UNIVERSITY. , 1914, Science.

[2]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[3]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[4]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.

[5]  Editors , 1986, Brain Research Bulletin.

[6]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[7]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[8]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[9]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[10]  Y. Bar-Shalom Tracking and data association , 1988 .

[11]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[12]  Gregory F. Cooper,et al.  The ALARM Monitoring System: A Case Study with two Probabilistic Inference Techniques for Belief Networks , 1989, AIME.

[13]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[14]  Dan Geiger,et al.  Identifying independence in bayesian networks , 1990, Networks.

[15]  Uffe Kjærulff Optimal decomposition of probabilistic networks by simulated annealing , 1992 .

[16]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[17]  Uue Kjjrull Approximation of Bayesian Networks through Edge Removals D Approximation of Bayesian Networks through Edge Removals , 1993 .

[18]  Frank Jensen,et al.  Optimal junction Trees , 1994, UAI.

[19]  Nevin L. Zhang,et al.  A simple approach to Bayesian network computations , 1994 .

[20]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[21]  Uffe Kjærulff,et al.  Reduction of Computational Complexity in Bayesian Networks Through Removal of Weak Dependences , 1994, UAI.

[22]  Denise Draper,et al.  Clustering Without (Thinking About) Triangulation , 1995, UAI.

[23]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[24]  Patrick Hébert,et al.  Probabilistic Map Learning: Necessity and Difficulties , 1995, Reasoning with Uncertainty in Robotics.

[25]  `# Clavicle —? etiology' , 1996 .

[26]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[27]  Ross D. Shachter Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams) , 1998, UAI.

[28]  Prakash P. Shenoy,et al.  A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions , 1998, UAI.

[29]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[30]  John Eccleston,et al.  Statistics and Computing , 2006 .

[31]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[32]  Xavier Boyen,et al.  Exploiting the Architecture of Dynamic Systems , 1999, AAAI/IAAI.

[33]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[34]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[35]  Deborah Estrin,et al.  Directed diffusion: a scalable and robust communication paradigm for sensor networks , 2000, MobiCom '00.

[36]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[37]  John J. Leonard,et al.  A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization , 2000 .

[38]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[39]  Steffen L. Lauritzen,et al.  Stable local computation with conditional Gaussian distributions , 2001, Stat. Comput..

[40]  Pinar Heggernes,et al.  The Computational Complexity of the Minimum Degree Algorithm , 2001 .

[41]  P. Gehler,et al.  An introduction to graphical models , 2001 .

[42]  Daphne Koller,et al.  Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence , 2001 .

[43]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[44]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[45]  Carlos Guestrin,et al.  Multiagent Planning with Factored MDPs , 2001, NIPS.

[46]  Uri Lerner,et al.  Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms , 2001, UAI.

[47]  Nathan Srebro,et al.  Maximum likelihood bounded tree-width Markov networks , 2001, Artif. Intell..

[48]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[49]  Kevin P. Murphy,et al.  The Factored Frontier Algorithm for Approximate Inference in DBNs , 2001, UAI.

[50]  Shun-ichi Amari,et al.  Information geometry on hierarchy of probability distributions , 2001, IEEE Trans. Inf. Theory.

[51]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[52]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[54]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[55]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[56]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[57]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[58]  Sebastian Thrun,et al.  Results for outdoor-SLAM using sparse extended information filters , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[59]  Avi Pfeffer,et al.  Loopy Belief Propagation as a Basis for Communication in Sensor Networks , 2002, UAI.

[60]  Sebastian Thrun,et al.  Simultaneous localization and mapping with unknown data association using FastSLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[61]  Mark A. Paskin,et al.  Junction tree algorithms for solving sparse linear systems , 2003 .

[62]  Wei Hong,et al.  Beyond Average: Toward Sophisticated Sensing with Queries , 2003, IPSN.

[63]  Richard G. Baraniuk,et al.  The embedded triangles algorithm for distributed estimation in sensor networks , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[64]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[65]  David E. Culler,et al.  Taming the underlying challenges of reliable multihop routing in sensor networks , 2003, SenSys '03.

[66]  Deborah Estrin,et al.  A Collaborative Approach to In-Place Sensor Calibration , 2003, IPSN.

[67]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[68]  Sebastian Thrun,et al.  Locating moving entities in indoor environments with teams of mobile robots , 2003, AAMAS '03.

[69]  Justin Dauwels,et al.  On Structured-Summary Propagation, LFSR Synchronization, and Low-Complexity Trellis Decoding , 2003 .

[70]  Leonidas J. Guibas,et al.  Collaborative signal and information processing: an information-directed approach , 2003 .

[71]  Adnan Darwiche,et al.  Morphing the Hugin and Shenoy-Shafer Architectures , 2003, ECSQARU.

[72]  Stuart J. Russell,et al.  BLOG: Relational Modeling with Unknown Objects , 2004 .

[73]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[74]  Annals of Mathematics and Artificial Intelligence , 2004, Annals of Mathematics and Artificial Intelligence.

[75]  J. Jackson Wiley Series in Probability and Mathematical Statistics , 2004 .

[76]  David E. Culler,et al.  The Emergence of Networking Abstractions and Techniques in TinyOS , 2004, NSDI.

[77]  C. Guestrin,et al.  Distributed regression: an efficient framework for modeling sensor network data , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[78]  A.S. Willsky,et al.  Nonparametric belief propagation for self-calibration in sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[79]  Ronald Parr,et al.  DP-SLAM 2.0 , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[80]  Carlos Guestrin,et al.  Robust Probabilistic Inference in Distributed Systems , 2004, UAI.

[81]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[82]  Carlos Guestrin,et al.  A robust architecture for distributed inference in sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..