A semiparametric density estimation approach to pattern classification

A new multivariate density estimator suitable for pattern classifier design is proposed. The data are first transformed so that the pattern vector components with the most non-Gaussian structure are separated from the Gaussian components. Nonparametric density estimation is then used to capture the non-Gaussian structure of the data while parametric Gaussian conditional density estimation is applied to the rest of the components. Both simulated and real data sets are used to demonstrate the potential usefulness of the proposed approach.

[1]  Cornelius T. Leondes Image processing and pattern recognition , 1998 .

[2]  P. Comon Independent Component Analysis , 1992 .

[3]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[4]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[5]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[6]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[7]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[8]  T. Cacoullos Estimation of a multivariate density , 1966 .

[9]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[10]  E. Oja,et al.  Independent Component Analysis , 2013 .

[11]  Ethem Alpaydin,et al.  Comparison of Statistical and Neural Classifiers and Their Applications to Optical Character Recogni , 1996 .

[12]  Luc Devroye,et al.  Nonparametric Density Estimation , 1985 .

[13]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[15]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[16]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[17]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  N. Hjort,et al.  Nonparametric Density Estimation with a Parametric Start , 1995 .

[19]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[20]  E. Nadaraya On Estimating Regression , 1964 .

[21]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[22]  Erkki Oja,et al.  Neural and statistical classifiers-taxonomy and two case studies , 1997, IEEE Trans. Neural Networks.

[23]  Michel Verleysen,et al.  Enhanced learning for evolutive neural architectures , 1995 .

[24]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[25]  J. Friedman,et al.  PROJECTION PURSUIT DENSITY ESTIMATION , 1984 .

[26]  Ingram Olkin,et al.  A Semiparametric Approach to Density Estimation , 1987 .