A semiparametric density estimation approach to pattern classification
暂无分享,去创建一个
[1] Cornelius T. Leondes. Image processing and pattern recognition , 1998 .
[2] P. Comon. Independent Component Analysis , 1992 .
[3] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[4] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[5] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[6] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[7] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[8] T. Cacoullos. Estimation of a multivariate density , 1966 .
[9] S. Dudoit,et al. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .
[10] E. Oja,et al. Independent Component Analysis , 2013 .
[11] Ethem Alpaydin,et al. Comparison of Statistical and Neural Classifiers and Their Applications to Optical Character Recogni , 1996 .
[12] Luc Devroye,et al. Nonparametric Density Estimation , 1985 .
[13] Jiri Matas,et al. On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[14] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[15] G. S. Watson,et al. Smooth regression analysis , 1964 .
[16] David W. Scott,et al. Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.
[17] Anil K. Jain,et al. Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[18] N. Hjort,et al. Nonparametric Density Estimation with a Parametric Start , 1995 .
[19] Todd,et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.
[20] E. Nadaraya. On Estimating Regression , 1964 .
[21] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[22] Erkki Oja,et al. Neural and statistical classifiers-taxonomy and two case studies , 1997, IEEE Trans. Neural Networks.
[23] Michel Verleysen,et al. Enhanced learning for evolutive neural architectures , 1995 .
[24] J. Mesirov,et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.
[25] J. Friedman,et al. PROJECTION PURSUIT DENSITY ESTIMATION , 1984 .
[26] Ingram Olkin,et al. A Semiparametric Approach to Density Estimation , 1987 .