Traveling Pulses for a Two-Species Chemotaxis Model

Mathematical models have been widely used to describe the collective movement of bacteria by chemotaxis. In particular, bacterial concentration waves traveling in a narrow channel have been experimentally observed and can be precisely described thanks to a mathematical model at the macroscopic scale. Such model was derived in [1] using a kinetic model based on an accurate description of the mesoscopic run-and-tumble process. We extend this approach to study the behavior of the interaction between two populations of E. Coli. Separately, each population travels with its own speed in the channel. When put together, a synchronization of the speed of the traveling pulses can be observed. We show that this synchronization depends on the fraction of the fast population. Our approach is based on mathematical analysis of a macroscopic model of partial differential equations. Numerical simulations in comparison with experimental observations show qualitative agreement.

[1]  W. Alt Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.

[2]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[3]  A Libchaber,et al.  Solitary modes of bacterial culture in a temperature gradient. , 2006, Physical review letters.

[4]  T. Nagai,et al.  Traveling waves in a chemotactic model , 1991, Journal of mathematical biology.

[5]  P. K. Maini,et al.  Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations , 2008, Bulletin of mathematical biology.

[6]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[7]  B. Perthame,et al.  Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .

[8]  B. Perthame Transport Equations in Biology , 2006 .

[9]  N. Vauchelet,et al.  Synchronising and non-synchronising dynamics for a two-species aggregation model , 2015, 1505.07659.

[10]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[11]  L. DeFelice E. coli in Motion , 2004, Biological and Medical Physics, Biomedical Engineering.

[12]  C. Schmeiser,et al.  Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms , 2005, Journal of mathematical biology.

[13]  Hyung Ju Hwang,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization , 2022 .

[14]  M. J. Tindalla,et al.  Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations , 2008 .

[15]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[16]  Irving P. Herman,et al.  Biological and medical physics, biomedical engineering , 2014 .

[17]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[18]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[19]  Nicolas Vauchelet,et al.  Existence and diffusive limit of a two-species kinetic model of chemotaxis , 2014, 1404.4769.

[20]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[21]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[22]  Pascal Silberzan,et al.  Mathematical Description of Bacterial Traveling Pulses , 2009, PLoS Comput. Biol..

[23]  Nicolas Vauchelet,et al.  Numerical Methods for One-Dimensional Aggregation Equations , 2015, SIAM J. Numer. Anal..

[24]  Dirk Horstmann,et al.  A Constructive Approach to Traveling Waves in Chemotaxis , 2004, J. Nonlinear Sci..

[25]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[26]  B. Perthame,et al.  Directional persistence of chemotactic bacteria in a traveling concentration wave , 2011, Proceedings of the National Academy of Sciences.

[27]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[28]  H. Berg Random Walks in Biology , 2018 .