On derandomization and average-case complexity of monotone functions
暂无分享,去创建一个
[1] Peter Bro Miltersen. Derandomizing Complexity Classes , 2001 .
[2] José D. P. Rolim,et al. Optimal Bounds for the Approximation of Boolean Functions and Some Applications , 1997, Theor. Comput. Sci..
[3] Ryan O'Donnell,et al. Hardness amplification within NP , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.
[4] Leslie G. Valiant. Negation is Powerless for Boolean Slice Functions , 1986, SIAM J. Comput..
[5] Nader H. Bshouty,et al. On the Fourier spectrum of monotone functions , 1996, JACM.
[6] Ravi B. Boppana,et al. The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[7] Nathan Linial,et al. The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[8] Ryan O'Donnell,et al. KKL, Kruskal-Katona, and Monotone Nets , 2013, SIAM J. Comput..
[9] Russell Impagliazzo,et al. Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.
[10] János Komlós,et al. An 0(n log n) sorting network , 1983, STOC.
[11] Алексей Дмитриевич Коршунов,et al. Монотонные булевы функции@@@Monotone Boolean functions , 2003 .
[12] Jeff Kinne,et al. Deterministic simulations and hierarchy theorems for randomized algorithms , 2010 .
[13] Leslie G. Valiant,et al. Learning Boolean formulas , 1994, JACM.
[14] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[15] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[16] Noam Nisan,et al. Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[17] Éva Tardos,et al. The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..
[18] George Karakostas,et al. General Pseudo-random Generators from Weaker Models of Computation , 2009, ISAAC.
[19] Peter Bro Miltersen,et al. Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy , 1999 .
[20] Christopher Umans. Pseudo-random generators for all hardnesses , 2002, STOC '02.
[21] Christopher Umans,et al. Simple extractors for all min-entropies and a new pseudorandom generator , 2005, JACM.
[22] Peter Bro Miltersen,et al. Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy , 1999, COCOON.
[23] Nathan Linial,et al. The Influence of Variables on Boolean Functions (Extended Abstract) , 1988, FOCS 1988.
[24] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .