On derandomization and average-case complexity of monotone functions

We investigate whether circuit lower bounds for monotone circuits can be used to derandomize randomized monotone circuits. We show that, in fact, any derandomization of randomized monotone computations would derandomize all randomized computations, whether monotone or not. We prove similar results in the settings of pseudorandom generators and average-case hard functions - that a pseudorandom generator secure against monotone circuits is also secure with somewhat weaker parameters against general circuits, and that an average-case hard function for monotone circuits is also hard with somewhat weaker parameters for general circuits.

[1]  Peter Bro Miltersen Derandomizing Complexity Classes , 2001 .

[2]  José D. P. Rolim,et al.  Optimal Bounds for the Approximation of Boolean Functions and Some Applications , 1997, Theor. Comput. Sci..

[3]  Ryan O'Donnell,et al.  Hardness amplification within NP , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[4]  Leslie G. Valiant Negation is Powerless for Boolean Slice Functions , 1986, SIAM J. Comput..

[5]  Nader H. Bshouty,et al.  On the Fourier spectrum of monotone functions , 1996, JACM.

[6]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[7]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[8]  Ryan O'Donnell,et al.  KKL, Kruskal-Katona, and Monotone Nets , 2013, SIAM J. Comput..

[9]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[10]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[11]  Алексей Дмитриевич Коршунов,et al.  Монотонные булевы функции@@@Monotone Boolean functions , 2003 .

[12]  Jeff Kinne,et al.  Deterministic simulations and hierarchy theorems for randomized algorithms , 2010 .

[13]  Leslie G. Valiant,et al.  Learning Boolean formulas , 1994, JACM.

[14]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[17]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[18]  George Karakostas,et al.  General Pseudo-random Generators from Weaker Models of Computation , 2009, ISAAC.

[19]  Peter Bro Miltersen,et al.  Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy , 1999 .

[20]  Christopher Umans Pseudo-random generators for all hardnesses , 2002, STOC '02.

[21]  Christopher Umans,et al.  Simple extractors for all min-entropies and a new pseudorandom generator , 2005, JACM.

[22]  Peter Bro Miltersen,et al.  Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy , 1999, COCOON.

[23]  Nathan Linial,et al.  The Influence of Variables on Boolean Functions (Extended Abstract) , 1988, FOCS 1988.

[24]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .