Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulators

[1]  Jie Chen,et al.  Emerging theory and phenomena in thermal conduction: A selective review , 2022, Science China Physics, Mechanics & Astronomy.

[2]  Z. Arabshahi,et al.  Unified modeling and experimental realization of electrical and thermal percolation in polymer composites , 2022, Applied Physics Reviews.

[3]  B. Djafari-Rouhani,et al.  Comparison of Brillouin Light Scattering and Density of States in a Supported Layer: Analytical and Experimental Study , 2022, Crystals.

[4]  T. Grotjohn,et al.  The Effects of Boron Doping on the Bulk and Surface Acoustic Phonons in Single-Crystal Diamond , 2022, 2206.12000.

[5]  J. Demko,et al.  Cryogenic Heat Management , 2022 .

[6]  T. Rabczuk,et al.  Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites , 2022, Composites Science and Technology.

[7]  M. Ramos Low-Temperature Thermal and Vibrational Properties of Disordered Solids , 2022 .

[8]  A. Minnich,et al.  Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals , 2021, Nature Communications.

[9]  A. Balandin,et al.  Specifics of Thermal Transport in Graphene Composites: Effect of Lateral Dimensions of Graphene Fillers. , 2021, ACS applied materials & interfaces.

[10]  A. Balandin,et al.  Thermal Transport in Graphene Composites: The Effect of Lateral Dimensions of Graphene Fillers , 2021, 2108.08409.

[11]  A. Balandin,et al.  Advances in Brillouin–Mandelstam light-scattering spectroscopy , 2021, Nature Photonics.

[12]  E. Coy,et al.  Thickness‐Dependent Elastic Softening of Few‐Layer Free‐Standing MoSe2 , 2021, Advanced materials.

[13]  Zhanjun Wu,et al.  A Review of the Polymer for Cryogenic Application: Methods, Mechanisms and Perspectives , 2021, Polymers.

[14]  A. Grushin Low-Temperature Thermal and Vibrational Properties of Disordered Solids , 2020, 2010.02851.

[15]  R. Butler,et al.  Properties of cryogenic and low temperature composite materials – A review , 2020, Cryogenics.

[16]  W. Fei,et al.  Recent Progress in Graphene/Polymer Nanocomposites , 2020, Advanced materials.

[17]  M. Riskin,et al.  Compression-enhanced thermal conductivity of carbon loaded polymer composites , 2020 .

[18]  A. Balandin Phononics of Graphene and Related Materials. , 2020, ACS nano.

[19]  R. Synowicki,et al.  Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays , 2020, Nanotechnology.

[20]  A. Balandin,et al.  Synthesis and Properties of Non-Curing Graphene Thermal Interface Materials , 2019, 1911.10383.

[21]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[22]  A. Balandin,et al.  Thermal Properties of the Binary‐Filler Hybrid Composites with Graphene and Copper Nanoparticles , 2019, Advanced Functional Materials.

[23]  A. McGaughey,et al.  Thermal Transport in Disordered Materials , 2018, Nanoscale and Microscale Thermophysical Engineering.

[24]  W. Tremel,et al.  Robustness of elastic properties in polymer nanocomposite films examined over the full volume fraction range , 2018, Scientific Reports.

[25]  R. Lake,et al.  Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. , 2018, ACS applied materials & interfaces.

[26]  Yu Su,et al.  Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance , 2018, Carbon.

[27]  H. Fukuyama,et al.  Specific heat, thermal conductivity, and magnetic susceptibility of cyanate ester resins – An alternative to commonly used epoxy resins , 2018, Cryogenics.

[28]  A. Balandin,et al.  Acoustic phonon spectrum engineering in bulk crystals via incorporation of dopant atoms , 2018, 1803.08954.

[29]  An Li,et al.  Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications , 2017, Polymers.

[30]  H. Fukuyama,et al.  Low temperature transport properties of pyrolytic graphite sheet , 2017, 1704.03204.

[31]  R. Gangradey,et al.  Measurement of thermal conductivity of materials down to 4.5 K for development of cryosorption pumps , 2017 .

[32]  Renkun Chen,et al.  Thermal transport in amorphous materials: a review , 2016 .

[33]  Timon Rabczuk,et al.  A software framework for probabilistic sensitivity analysis for computationally expensive models , 2016, Adv. Eng. Softw..

[34]  R. Lake,et al.  Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires , 2016, Nature Communications.

[35]  S. Masuda,et al.  Quantum-circuit refrigerator , 2016, Nature Communications.

[36]  J. L. Sebastian,et al.  Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements , 2016 .

[37]  Xu Xie,et al.  Thermal Conductivity, Heat Capacity, and Elastic Constants of Water-Soluble Polymers and Polymer Blends , 2016 .

[38]  Oren Regev,et al.  Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects , 2015 .

[39]  A. Minnich,et al.  Advances in the measurement and computation of thermal phonon transport properties , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  C. Dames,et al.  Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures , 2013 .

[41]  Yeon Suk Choi,et al.  Thermal property measurement of insulating material used in HTS power device , 2012 .

[42]  Yeon Suk Choi,et al.  Thermal property of insulating material at cryogenic temperature , 2012 .

[43]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[44]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[45]  J. Coleman,et al.  Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions , 2008, 0809.2690.

[46]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[47]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[48]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[49]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[50]  P. Keblinski,et al.  On the lack of thermal percolation in carbon nanotube composites , 2005 .

[51]  J. L. Smith,et al.  Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system , 2003 .

[52]  Xiao Liu,et al.  Low-temperature thermal conductivity and acoustic attenuation in amorphous solids , 2002 .

[53]  J. Rey,et al.  Thermal conductivity measurements of epoxy systems at low temperature , 2002 .

[54]  C. Talón,et al.  Low-temperature specific heat and thermal conductivity of glycerol , 2001, cond-mat/0110623.

[55]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[56]  M. Jäckel,et al.  Thermal properties of polymer/particle composites at low temperatures , 1995 .

[57]  S. Tanaeva,et al.  Thermophysical properties of epoxy composite materials at low temperatures , 1995 .

[58]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[59]  W. Scheibner,et al.  Thermal Conductivity and Specific Heat of an Epoxy Resin/Epoxy Resin Composite Material at Low Temperatures , 1985, February 16.

[60]  S. Knaak,et al.  Fibre-epoxy composites at low temperatures , 1984 .

[61]  S. Kelham,et al.  The thermal conductivity and specific heat of epoxy-resin from 0.1-80K , 1981 .

[62]  C. L. Choy,et al.  Thermal conductivity of polymers , 1977 .

[63]  F F T Araujo,et al.  The thermal conductivity of epoxy-resin/metal-powder composite materials from 1.7 to 300K , 1976 .

[64]  C. Choy,et al.  The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate , 1975 .

[65]  H. M. Rosenberg,et al.  The thermal conductivity of epoxy-resin / powder composite materials , 1974 .

[66]  P. Liley,et al.  Thermal Conductivity of the Elements , 1972 .

[67]  R. Pohl,et al.  Thermal Conductivity and Specific Heat of Noncrystalline Solids , 1971 .

[68]  R. B. Rauch,et al.  Low‐Temperature Thermal Conductivity of a Suspension of Copper Particles , 1970 .

[69]  R. Tye,et al.  thermal conductivity , 2019 .

[70]  W. Little The Transport of Heat Between Dissimilar Solids at Low Temperatures , 1959 .

[71]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2014 .

[72]  Donald J. Reichard,et al.  A SELECTIVE REVIEW , 2007 .

[73]  G. Briggs,et al.  Surface Brillouin Scattering—Extending Surface Wave Measurements to 20 GHz , 1995 .

[74]  O. Maldonado,et al.  Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures , 1992 .

[75]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[76]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[77]  J. R. Sandercock,et al.  Trends in brillouin scattering: Studies of opaque materials, supported films, and central modes , 1982 .