Micromagnetism and the microstructure of high-temperature permanent magnets

Sm2(Co,Cu,Fe,Zr)17 permanent magnets with their three-phase precipitation structure (cells, cell walls, and lamellae) show two characteristic features which so far are difficult to interpret but which are the prerequisites for high-temperature applications: (1) The hard magnetic properties only develop during the final step of the three-step annealing procedure consisting of homogenization, isothermal aging, and cooling. (2) Depending on the composition and on the annealing parameters, the temperature dependence of the coercivity can be easily changed from the conventional monotonic to the recent nonmonotonic behavior showing coercivities up to 1T even at 500K. The magnetic hardening during cooling is due to the fact that the cell walls order chemically and structurally during the cooling process. From an analysis of electron diffraction patterns of the superimposed structures existing before and after cooling it could be proven that a phase transition from a phase mixture of defective phases 2:17, 2:7, a...

[1]  G. Hadjipanayis,et al.  Magnetic domain structure in SmCo 2:17 permanent magnets , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[2]  C. Chen,et al.  High temperature 2:17 magnets: relationship of magnetic properties to microstructure and processing , 2000 .

[3]  C. Allibert,et al.  Structural and thermodynamic data on the pseudobinary phases R(Co1−xCux)5 WITH R ≡ Sm, Y, Ce , 1987 .

[4]  F. Delannay,et al.  The influence of zirconium on Sm(CoFeCuZr)7.2 alloys for permanent magnets I: Identification of the phases by transmission electron microscopy , 1987 .

[5]  Christina H. Chen,et al.  A new class of Sm-TM magnets for operating temperatures up to 550/spl deg/C , 2000 .

[6]  G. Hoffer,et al.  A Family of New Cobalt‐Base Permanent Magnet Materials , 1967 .

[7]  K. Strnat,et al.  Rare earth-cobalt permanent magnets near the 2-17 composition , 1976 .

[8]  C. Allibert,et al.  Redetermination of the phase equilibria in the system Sm-Co-Cu for Sm content 0–20 AT.% AT 850°C , 1989 .

[9]  J. M. D. Coey,et al.  Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia , 1990 .

[10]  J. Cadogan,et al.  Crystal Fields in Nd2Fe14B , 1984 .

[11]  L. Rabenberg,et al.  Genesis of the cell microstructure in the Sm(Co, Fe, Cu, Zr) permanent magnets with 2:17 type , 1993 .

[12]  H. Kronmüller,et al.  Investigation of bloch-wall-pinning by antiphase boundaries in RCo5-compounds , 1975 .

[13]  F. Delannay,et al.  The influence of zirconium on Sm(Co, Fe, Cu, Zr)7.2 alloys for permanent magnets II: Composition and lattice constants of the phases in heat-treated materials , 1987 .

[14]  F. Grandjean,et al.  Supermagnets, hard magnetic materials , 1991 .

[15]  Michael H. Walmer,et al.  Sm2(Co,Fe,Cu,Zr)17 magnets for use at temperature ⩾400 °C , 1998 .

[16]  R. Coehoorn Electronic Structure Calculations for Rare Earth-Transition Metal Compounds , 1991 .

[17]  A. Seeger,et al.  Theorie der Koerzitivfeldstärke von hexagonalen Kobalt-Einkristallen , 1966 .

[18]  G. Hadjipanayis,et al.  Coercivity Analysis in Sm(CoFeCuZr)z Magnets with Abnormal Temperature Behavior , 2002 .

[19]  Frederick E. Pinkerton,et al.  Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets (invited) , 1984 .

[20]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  E. Lectard,et al.  Saturation magnetization and anisotropy fields in the Sm(Co1−xCux)5 phases , 1994 .

[22]  A. Ray Metallurgical behavior of Sm(Co,Fe,Cu,Zr)z alloys , 1984 .

[23]  V. K. Madisetti,et al.  Combined modulation and error correction codes for storage channels , 1996 .

[24]  Dagmar Goll,et al.  Micromagnetic theory of the pinning of domain walls at phase boundaries , 2002 .

[25]  M. Rühle,et al.  Improved quantification of grain boundary segregation by EDS in a dedicated STEM , 1997 .

[26]  D. Goll,et al.  Melt-spun precipitation-hardened Sm2(Co,Cu,Fe,Zr)17 magnets with abnormal temperature dependence of coercivity , 2000 .

[27]  M. Sagawa,et al.  New material for permanent magnets on a base of Nd and Fe (invited) , 1984 .

[28]  K. Strnat,et al.  Easy directions of magnetization in ternary R 2 (Co, Fe) 17 phases , 1972 .

[29]  R. Friedberg,et al.  New Theory of Coercive Force of Ferromagnetic Materials , 1975 .

[30]  G. Petzow,et al.  Samarium-Cobalt Phase Equilibria Revisited; Relevance to Permanent Magnets , 1998 .

[31]  J. Weber,et al.  A new model for the coercivity mechanism of Sm/sub 2/(Co,Fe,Cu,Zr)/sub 17/ magnets , 1996 .

[32]  J. Fidler,et al.  Coercivity of precipitation hardened cobalt rare earth 17:2 permanent magnets , 1982 .

[33]  H. Kato,et al.  Magnetic properties of the single magnetic domain particles of Sm2Fe17Nx compounds , 1993 .

[34]  Toshiyuki Koyama,et al.  The microstructure of sintered Sm (Co0.72Fe0.20Cu0.055Zr0.025) (7.5) permanent magnet studied by atom probe , 2004 .

[35]  K. Buschow,et al.  The cobalt-rich regions of the samarium-cobalt and gadolinium-cobalt phase diagrams , 1973 .

[36]  J. Livingston,et al.  Microstructure of aged (Co,Cu,Fe)7Sm magnets , 1977 .

[37]  H. Kronmüller,et al.  Micromagnetic analysis of precipitation hardened permanent magnets , 1984 .

[38]  T. Gemming,et al.  Microstructure, microchemistry, and magnetic properties of melt-spun Sm(Co,Fe,Cu,Zr)z magnets , 2003 .

[39]  Y. Tawara,et al.  Permanent-magnet properties of Sm-Ce-Co-Fe-Cu alloys with compositions between 1-5 and 2-17 , 1974 .