Synchronization of oscillators: an ideal introduction to phase transitions

The spontaneous synchronization of phase-coupled, non-identical oscillators is explored numerically via the famous Kuramoto model. The conditions for synchronization are examined as a function of the coupling network. I argue that such a numerical exploration provides a feasible way to introduce the topic of phase transitions early in the physics curriculum. Furthermore, this approach can be used to familiarize undergraduate students with the notions of emergence and universality.

[1]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[2]  T. J. Walker,et al.  Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket , 1969, Science.

[3]  A. Winfree The geometry of biological time , 1991 .

[4]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[5]  Shigeru Shinomoto,et al.  Local and Grobal Self-Entrainments in Oscillator Lattices , 1987 .

[6]  J. Crawford,et al.  Amplitude expansions for instabilities in populations of globally-coupled oscillators , 1993, patt-sol/9310005.

[7]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[8]  Arecchi,et al.  Theory of phase locking of globally coupled laser arrays. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[10]  R. Dickman,et al.  Nonequilibrium Phase Transitions in Lattice Models , 1999 .

[11]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[12]  S. Strogatz Exploring complex networks , 2001, Nature.

[13]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[14]  J. Pantaleone,et al.  Synchronization of metronomes , 2002 .

[15]  T. Ichinomiya Frequency synchronization in a random oscillator network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[17]  Bifurcation Study of the Kuramoto Transition in Random Oscillator Networks , 2005 .

[18]  Juan P. Torres,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[19]  Edward Ott,et al.  Emergence of coherence in complex networks of heterogeneous dynamical systems. , 2006, Physical review letters.

[20]  Katja Lindenberg,et al.  Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators. , 2006, Physical review letters.

[21]  T. Solomon,et al.  Synchronization of oscillating reactions in an extended fluid system. , 2006, Physical review letters.