Approaches to microRNA discovery

MicroRNAs (miRNAs) are noncoding RNAs that can regulate gene expression. Several hundred genes encoding miRNAs have been experimentally identified in animals, and many more are predicted by computational methods. How can new miRNAs be discovered and distinguished from other types of small RNA? Here we summarize current methods for identifying and validating miRNAs and discuss criteria used to define an miRNA.

[1]  Hakluyt's Voyages,et al.  Annotation , 1936, Glasgow Medical Journal.

[2]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[3]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[4]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[5]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[6]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[7]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[8]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[9]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[10]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[11]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[12]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[13]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[14]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[15]  Edwin Cuppen,et al.  The microRNA-producing enzyme Dicer1 is essential for zebrafish development , 2003, Nature Genetics.

[16]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[17]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[18]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[19]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[20]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[21]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[22]  T. Tuschl,et al.  Cloning of Small RNA Molecules , 2003 .

[23]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[24]  M. Oshimura,et al.  Dicer is essential for formation of the heterochromatin structure in vertebrate cells , 2004, Nature Cell Biology.

[25]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[26]  J. Cavaille,et al.  A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. , 2004, Genome research.

[27]  Zissimos Mourelatos,et al.  Microarray-based, high-throughput gene expression profiling of microRNAs , 2004, Nature Methods.

[28]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[29]  Yves Van de Peer,et al.  Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences , 2004, Bioinform..

[30]  Henry Mirsky,et al.  RNA editing of a miRNA precursor. , 2004, RNA.

[31]  Hong Jiang,et al.  Identification of human fetal liver miRNAs by a novel method , 2005, FEBS letters.

[32]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[33]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[34]  Eugene Berezikov,et al.  Phylogenetic Shadowing and Computational Identification of Human microRNA Genes , 2005, Cell.

[35]  Shivakundan Singh Tej,et al.  Elucidation of the Small RNA Component of the Transcriptome , 2005, Science.

[36]  Mihaela Zavolan,et al.  Identification of Clustered Micrornas Using an Ab Initio Prediction Method , 2022 .

[37]  Thomas Tuschl,et al.  Identification and characterization of small RNAs involved in RNA silencing , 2005, FEBS letters.

[38]  Eugene Berezikov,et al.  Camels and zebrafish, viruses and cancer: a microRNA update. , 2005, Human molecular genetics.

[39]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[40]  Olivier Elemento,et al.  Revealing Posttranscriptional Regulatory Elements Through Network-Level Conservation , 2005, PLoS Comput. Biol..

[41]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[42]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[43]  T. Tuschl,et al.  Cloning of Small RNA Molecules , 2003, Current protocols in molecular biology.

[44]  Isaac Bentwich Prediction and validation of microRNAs and their targets , 2005, FEBS letters.

[45]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[46]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[47]  Fei Li,et al.  MicroRNA identification based on sequence and structure alignment , 2005, Bioinform..

[48]  Wigard P Kloosterman,et al.  In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes , 2005, Nature Methods.

[49]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[50]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[51]  Chris Sander,et al.  The developmental miRNA profiles of zebrafish as determined by small RNA cloning. , 2005, Genes & development.

[52]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[53]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[54]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[55]  Peter F. Stadler,et al.  Non-coding RNAs in Ciona intestinalis , 2005, ECCB/JBI.

[56]  Fei Li,et al.  Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.

[57]  H. Horvitz,et al.  The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. , 2005, Developmental cell.

[58]  Daniel Gautheret,et al.  Profile-based detection of microRNA precursors in animal genomes , 2005, Bioinform..

[59]  P. Stadler,et al.  Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome , 2005, Nature Biotechnology.

[60]  Vetle I. Torvik,et al.  Mammalian microRNAs derived from genomic repeats. , 2005, Trends in genetics : TIG.

[61]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[62]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[63]  Hsien-Da Huang,et al.  miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes , 2005, Nucleic Acids Res..

[64]  Pamela J Green,et al.  Sweating the small stuff: microRNA discovery in plants. , 2006, Current opinion in biotechnology.

[65]  P. Stadler,et al.  Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[66]  S. Kunes,et al.  Synaptic Protein Synthesis Associated with Memory Is Regulated by the RISC Pathway in Drosophila , 2006, Cell.

[67]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[68]  Jörg Vogel,et al.  Experimental approaches to identify non-coding RNAs , 2006, Nucleic acids research.

[69]  E. Devor Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. , 2006, The Journal of heredity.

[70]  A. Teleman,et al.  Drosophila lacking microRNA miR-278 are defective in energy homeostasis. , 2006, Genes & development.

[71]  Jin-Wu Nam,et al.  Genomics of microRNA. , 2006, Trends in genetics : TIG.

[72]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[73]  HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide , 2006, Nucleic acids research.

[74]  R. Plasterk,et al.  RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. , 2005, RNA.

[75]  J. Mattick,et al.  Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. , 2006, Trends in genetics : TIG.

[76]  Brian S. Roberts,et al.  The colorectal microRNAome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.