One-step firing for electroded PZT thick films applied to MEMS

Free-standing electroded piezoelectric thick-films are straightforwardly fabricated thanks to the association of the low-cost screen-printing technology to the sacrificial layer method. After subsequent printing and drying of a stack of sacrificial, Au, PZT and Au layers on an alumina substrate, the final firing is performed at 900 ?C. Then, the partial or total releasing step of the Au/PZT/Au is achieved in a diluted acidic solution. Bridges (3.3???3.3???0.080 mm3) and cantilevers (8???2???0.09 mm3) are directly attached to the alumina substrate on top of which they are processed. Studies of the electromechanical behavior of these components show the influence of both the releasing and the densification processes on the piezoelectric properties of the final component. Cantilevers fabricated with this method exhibit favourable properties for sensing applications.

[1]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[2]  Qing-Hua Huang,et al.  An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues , 2009, Measurement science & technology.

[3]  Peter Ryser,et al.  Processing of graphite-based sacrificial layer for microfabrication of low temperature co-fired ceramics (LTCC) , 2006 .

[4]  Ryutaro Maeda,et al.  Piezoelectric Microactuator Devices , 2004 .

[5]  Modelling and Characterizing a Screen‐Printed Metallic Electrothermal Microactuator , 2007 .

[6]  Stepan Lucyszyn,et al.  Self-assembled screen-printed microwave inductors , 2005 .

[7]  O. Hansen,et al.  Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[8]  Raj Mutharasan,et al.  Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium , 2007 .

[9]  W. W. Wolny,et al.  Piezoceramic thick films - technology and applications. State of the art in Europe , 2000, ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076).

[10]  Srinivas Tadigadapa,et al.  Piezoelectric MEMS sensors: state-of-the-art and perspectives , 2009 .

[11]  Jae Hong Park,et al.  Resonance properties and mass sensitivity of monolithic microcantilever sensors actuated by piezoelectric PZT thick film , 2006 .

[12]  D. Savitz,et al.  Review of epidemiologic evidence on benzene and lymphatic and hematopoietic cancers. , 1997, American journal of industrial medicine.

[13]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[14]  Neil M. White,et al.  A novel micropump design with thick-film piezoelectric actuation , 1997 .

[15]  H. Debéda,et al.  Study of Screen-Printed PZT Cantilevers Both Self-Actuated and Self-Read-Out , 2014 .

[16]  S. H. Kim,et al.  Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting , 2009 .

[17]  Neil M. White,et al.  Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting , 2009 .

[18]  E. Llobet Gas sensors using carbon nanomaterials: A review , 2013 .

[19]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[20]  Mario Ricardo Gongora-Rubio,et al.  Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST) , 2001 .

[21]  Neil M. White,et al.  Towards a piezoelectric vibration-powered microgenerator , 2001 .

[22]  P Balling,et al.  Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films , 2013, Reports on progress in physics. Physical Society.

[23]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[24]  Steve Beeby,et al.  A credit card sized self powered smart sensor node , 2011 .

[25]  H. Debéda,et al.  Use of the longitudinal mode of screen-printed piezoelectric cantilevers coated with PEUT for toluene detection. Comparison with silicon cantilevers , 2013 .

[26]  Wan Y. Shih,et al.  Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers , 2002 .

[27]  E. Thomsen,et al.  Advantages of PZT thick film for MEMS sensors , 2010 .

[28]  C. Negreira,et al.  Evaluation of the effect of porosity and substrate on the piezoelectric behaviour of thick-film PZT elements , 2006 .

[29]  C.B. Sippola,et al.  A ceramic capacitive pressure microsensor with screen-printed diaphragm , 2005, IEEE Sensors, 2005..

[30]  A. Boisen,et al.  Cantilever-like micromechanical sensors , 2011 .

[31]  Neil M. White,et al.  Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements , 2004 .

[32]  Dong-Wook You,et al.  Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles , 2014 .

[33]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[34]  Oliver Brand,et al.  Unconventional uses of microcantilevers as chemical sensors in gas and liquid media , 2012 .

[35]  F. Ménil,et al.  Influence of the densification parameters on screen-printed component properties , 2005 .

[36]  Isabelle Dufour,et al.  Force Sensors Based on Screen-Printed Cantilevers , 2010, IEEE Sensors Journal.

[37]  C. Castille Étude de MEMS piézoélectriques libérés et microstructurés par sérigraphie : application à la détection en milieu gazeux et en milieu liquide , 2010 .

[38]  D. Polla,et al.  Fabrication process of pzt piezoelectric cantilever unimorphs using surface micromachining , 1997 .