Iterative Single Data Algorithm for Training Kernel Machines from Huge Data Sets: Theory and Performance

[1]  Vojislav Kecman,et al.  Bias Term b in SVMs Again , 2004, ESANN.

[2]  Vojislav Kecman,et al.  On the equality of kernel AdaTron and sequential minimal optimization in classification and regression tasks and alike algorithms for kernel machines , 2003, ESANN.

[3]  Jian-xiong Dong,et al.  A Fast SVM Training Algorithm , 2003, Int. J. Pattern Recognit. Artif. Intell..

[4]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[5]  Mahesan Niranjan,et al.  Uncertainty in geometric computations , 2002 .

[6]  Tong Zhang,et al.  An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods , 2001, AI Mag..

[7]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[8]  Konstantinos Veropoulos,et al.  Medical Decision Making , 2011, Yamada's Textbook of Gastroenterology.

[9]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[10]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[11]  David R. Musicant,et al.  Successive overrelaxation for support vector machines , 1999, IEEE Trans. Neural Networks.

[12]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[13]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[14]  Nello Cristianini,et al.  Advances in Kernel Methods - Support Vector Learning , 1999 .

[15]  J. Platt Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .

[16]  Nello Cristianini,et al.  The Kernel-Adatron : A fast and simple learning procedure for support vector machines , 1998, ICML 1998.

[17]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[18]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[19]  Federico Girosi,et al.  An improved training algorithm for support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[20]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[21]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[22]  A. Ostrowski Solution of equations and systems of equations , 1967 .