Error analysis for a finite difference scheme for axisymmetric mean curvature flow of genus-0 surfaces
暂无分享,去创建一个
[1] Buyang Li,et al. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces , 2018, Numerische Mathematik.
[2] G. Dziuk,et al. An algorithm for evolutionary surfaces , 1990 .
[3] Harald Garcke,et al. Parametric finite element approximations of curvature-driven interface evolutions , 2020 .
[4] Carlo Mantegazza,et al. Lecture Notes on Mean Curvature Flow , 2011 .
[5] Klaus Ecker,et al. Regularity Theory for Mean Curvature Flow , 2003 .
[6] S. J. Kleene,et al. Self-shrinkers with a rotational symmetry , 2010, 1008.1609.
[7] Charles M. Elliott,et al. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick , 2016, 1602.07143.
[8] GarckeHarald,et al. On the parametric finite element approximation of evolving hypersurfaces in R 3 , 2008 .
[9] S. J. Kleene,et al. Immersed self-shrinkers , 2013, 1306.2383.
[10] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[11] K. Deckelnick,et al. A finite element error analysis for axisymmetric mean curvature flow , 2019, ArXiv.
[12] HARALD GARCKE,et al. On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations , 2007, SIAM J. Sci. Comput..
[13] Gerhard Dziuk,et al. CONVERGENCE OF A SEMI-DISCRETE SCHEME FOR THE CURVE SHORTENING FLOW , 1994 .
[14] Harald Garcke,et al. Variational discretization of axisymmetric curvature flows , 2018, Numerische Mathematik.
[15] Harald Garcke,et al. On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..
[16] H. Garcke,et al. On a degenerate parabolic system describing the mean curvature flow of rotationally symmetric closed surfaces , 2019, Journal of Evolution Equations.