Error analysis for a finite difference scheme for axisymmetric mean curvature flow of genus-0 surfaces

We consider a finite difference approximation of mean curvature flow for axisymmetric surfaces of genus zero. A careful treatment of the degeneracy at the axis of rotation for the one dimensional partial differential equation for a parameterization of the generating curve allows us to prove error bounds with respect to discrete $L^2$-- and $H^1$--norms for a fully discrete approximation. The theoretical results are confirmed with the help of numerical convergence experiments. We also present numerical simulations for some genus-0 surfaces, including for a non-embedded self-shrinker for mean curvature flow.

[1]  Buyang Li,et al.  A convergent evolving finite element algorithm for mean curvature flow of closed surfaces , 2018, Numerische Mathematik.

[2]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[3]  Harald Garcke,et al.  Parametric finite element approximations of curvature-driven interface evolutions , 2020 .

[4]  Carlo Mantegazza,et al.  Lecture Notes on Mean Curvature Flow , 2011 .

[5]  Klaus Ecker,et al.  Regularity Theory for Mean Curvature Flow , 2003 .

[6]  S. J. Kleene,et al.  Self-shrinkers with a rotational symmetry , 2010, 1008.1609.

[7]  Charles M. Elliott,et al.  On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick , 2016, 1602.07143.

[8]  GarckeHarald,et al.  On the parametric finite element approximation of evolving hypersurfaces in R 3 , 2008 .

[9]  S. J. Kleene,et al.  Immersed self-shrinkers , 2013, 1306.2383.

[10]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[11]  K. Deckelnick,et al.  A finite element error analysis for axisymmetric mean curvature flow , 2019, ArXiv.

[12]  HARALD GARCKE,et al.  On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations , 2007, SIAM J. Sci. Comput..

[13]  Gerhard Dziuk,et al.  CONVERGENCE OF A SEMI-DISCRETE SCHEME FOR THE CURVE SHORTENING FLOW , 1994 .

[14]  Harald Garcke,et al.  Variational discretization of axisymmetric curvature flows , 2018, Numerische Mathematik.

[15]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[16]  H. Garcke,et al.  On a degenerate parabolic system describing the mean curvature flow of rotationally symmetric closed surfaces , 2019, Journal of Evolution Equations.