Accurate derivative evaluation for any Grad-Shafranov solver

We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad-Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.

[1]  Stephen C. Jardin,et al.  The Princeton spectral equilibrium code: PSEC , 1985 .

[2]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[3]  Carl R. Sovinec,et al.  Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..

[4]  Michael O'Neil,et al.  Fast algorithms for Quadrature by Expansion I: Globally valid expansions , 2016, J. Comput. Phys..

[5]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[6]  W. Schneider,et al.  Erato Stability Code , 1984 .

[7]  Laurent Villard,et al.  A global collisionless PIC code in magnetic coordinates , 2007, Comput. Phys. Commun..

[8]  Rony Keppens,et al.  Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2010 .

[9]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[10]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[11]  L. L. Lao,et al.  Equilibrium properties of spherical torus plasmas in NSTX , 2001 .

[12]  Antoine J. Cerfon,et al.  ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria , 2014, Comput. Phys. Commun..

[13]  J. P. Goedbloed,et al.  Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation , 1991 .

[14]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[15]  Anders Bondeson,et al.  Improved poloidal convergence of the MARS code for MHD stability analysis , 1999 .

[16]  Leslie Greengard,et al.  Quadrature by expansion: A new method for the evaluation of layer potentials , 2012, J. Comput. Phys..

[17]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[18]  J. P. Goedbloed,et al.  FINESSE: axisymmetric MHD equilibria with flow , 2002 .

[19]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[20]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[21]  Bruno Després,et al.  Magnetic Equations with FreeFem++: the Grad-Shafranov Equation & the Current Hole , 2011 .

[22]  J. Freidberg,et al.  “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .

[23]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[24]  Josef A. Sifuentes,et al.  Randomized methods for rank-deficient linear systems , 2014, 1401.3068.

[25]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[26]  A. Bondeson,et al.  Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .

[27]  Manas Rachh,et al.  Integral equation methods for problems in electrostatics, elastostatics and viscous flow , 2015 .

[28]  R. Aymar,et al.  The ITER design , 2002 .

[29]  Charles L. Epstein,et al.  On the Convergence of Local Expansions of Layer Potentials , 2012, SIAM J. Numer. Anal..

[30]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[31]  Leslie Greengard,et al.  A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..